AoPS Community

www.artofproblemsolving.com/community/c583184 by laegolas, moldovan

- \quad Paper 1

1 Let x, y be positive integers with $y>3$ and $x^{2}+y^{4}=2\left((x-6)^{2}+(y+1)^{2}\right)$. Prove that: $x^{2}+y^{4}=1994$.

2 Let A, B, C be collinear points on the plane with B between A and C. Equilateral triangles $A B D, B C E, C A F$ are constructed with D, E on one side of the line $A C$ and F on the other side. Prove that the centroids of the triangles are the vertices of an equilateral triangle, and that the centroid of this triangle lies on the line $A C$.

3 Find all real polynomials $f(x)$ satisfying $f\left(x^{2}\right)=f(x) f(x-1)$ for all x.
4 Consider all $m \times n$ matrices whose all entries are 0 or 1 . Find the number of such matrices for which the number of 1 -s in each row and in each column is even.
$5 \quad$ Let $f(n)$ be defined for $n \in \mathbb{N}$ by $f(1)=2$ and $f(n+1)=f(n)^{2}-f(n)+1$ for $n \geq 1$. Prove that for all $n>1$:
$1-\frac{1}{2^{2^{n-1}}}<\frac{1}{f(1)}+\frac{1}{f(2)}+\ldots+\frac{1}{f(n)}<1-\frac{1}{2^{2^{n}}}$

- Paper 2

1 A sequence $\left(x_{n}\right)$ is given by $x_{1}=2$ and $n x_{n}=2(2 n-1) x_{n-1}$ for $n>1$. Prove that x_{n} is an integer for every $n \in \mathbb{N}$.

2 Let p, q, r be distinct real numbers that satisfy: $q=p(4-p), r=q(4-q), p=r(4-r)$. Find all possible values of $p+q+r$.

3 Prove that for every integer $n>1$,

$$
n\left((n+1)^{\frac{2}{n}}-1\right)<\sum_{i=1}^{n} \frac{2 i+1}{i^{2}}<n\left(1-n^{-\frac{2}{n-1}}\right)+4 .
$$

4 Suppose that ω, a, b, c are distinct real numbers for which there exist real numbers x, y, z that satisfy the following equations:
$x+y+z=1, a^{2} x+b^{2} y+c^{2} z=\omega^{2}, a^{3} x+b^{3} y+c^{3} z=\omega^{3}, a^{4} x+b^{4} y+c^{4} z=\omega^{4}$.
Express ω in terms of a, b, c.

5 If a square is partitioned into n convex polygons, determine the maximum possible number of edges in the obtained figure.
(You may wish to use the following theorem of Euler. If a polygon is partitioned into n polygons with v vertices and e edges in the resulting figure, then $v-e+n=1$.)

