Art of Problem Solving

AoPS Community

www.artofproblemsolving.com/community/c583185
by laegolas, moldovan

- \quad Paper 1

1 There are n^{2} students in a class. Each week all the students participate in a table quiz. Their teacher arranges them into n teams of n players each. For as many weeks as possible, this arrangement is done in such a way that any pair of students who were members of the same team one week are not in the same team in subsequent weeks. Prove that after at most $n+2$ weeks, it is necessary for some pair of students to have been members of the same team in at least two different weeks.

2 Determine all integers a for which the equation $x^{2}+a x y+y^{2}=1$ has infinitely many distinct integer solutions x, y.

3 Points A, X, D lie on a line in this order, point B is on the plane such that $\angle A B X>120^{\circ}$, and point C is on the segment $B X$. Prove the inequality:
$2 A D \geq \sqrt{3}(A B+B C+C D)$.
4 Consider the following one-person game played on the real line. During the game disks are piled at some of the integer points on the line. To perform a move in the game, the player chooses a point j at which at least two disks are piled and then takes two disks from the point j and places one of them at $j-1$ and one at $j+1$. Initially, $2 n+1$ disks are placed at point 0 . The player proceeds to perform moves as long as possible. Prove that after $\frac{1}{6} n(n+1)(2 n+1)$ moves no further moves will be possible and that at this stage, one disks remains at each of the positions $-n,-n+1, \ldots, 0, \ldots n$.
$5 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all real numbers x, y : $x f(x)-y f(y)=(x-y) f(x+y)$.

- Paper 2

1 Prove that for every positive integer n, $n^{n} \leq(n!)^{2} \leq\left(\frac{(n+1)(n+2)}{6}\right)^{n}$.

2 Let a, b, c be complex numbers. Prove that if all the roots of the equation $x^{3}+a x^{2}+b x+c=0$ are of module 1 , then so are the roots of the equation $x^{3}+|a| x^{2}+|b| x+|c|=0$.

3 Let S be the square consisting of all pints (x, y) in the plane with $0 \leq x, y \leq 1$. For each real number t with $0<t<1$, let C_{t} denote the set of all points $(x, y) \in S$ such that (x, y) is on or
above the line joining $(t, 0)$ to $(0,1-t)$.
Prove that the points common to all C_{t} are those points in S that are on or above the curve $\sqrt{x}+\sqrt{y}=1$.

4 Points P, Q, R are given in the plane. It is known that there is a triangle $A B C$ such that P is the midpoint of $B C, Q$ the point on side $C A$ with $\frac{C Q}{Q A}=2$, and R the point on side $A B$ with $\frac{A R}{R B}=2$. Determine with proof how the triangle $A B C$ may be reconstructed from P, Q, R.
$5 \quad$ For each integer n of the form $n=p_{1} p_{2} p_{3} p_{4}$, where $p_{1}, p_{2}, p_{3}, p_{4}$ are distinct primes, let $1=d_{1}<$ $d_{2}<\ldots<d_{15}<d_{16}=n$ be the divisors of n. Prove that if $n<1995$, then $d_{9}-d_{8} \neq 22$.

