AoPS Community

www.artofproblemsolving.com/community/c583207
by laegolas, moldovan

- Paper 1
$1 \quad$ Find all pairs of integers (x, y) satisfying $1+1996 x+1998 y=x y$.
2 For a point M inside an equilateral triangle $A B C$, let D, E, F be the feet of the perpendiculars from M onto $B C, C A, A B$, respectively. Find the locus of all such points M for which $\angle F D E$ is a right angle.

3 Find all polynomials $p(x)$ satisfying the equation: $(x-16) p(2 x)=16(x-1) p(x)$ for all x.
4 Let a, b, c be nonnegative real numbers. Suppose that $a+b+c \geq a b c$. Prove that:
$a^{2}+b^{2}+c^{2} \geq a b c$.
$5 \quad$ Let S be the set of odd integers greater than 1 . For each $x \in S$, denote by $\delta(x)$ the unique integer satisfying the inequality $2^{\delta(x)}<x<2^{\delta(x)+1}$. For $a, b \in S$, define:
$a * b=2^{\delta(a)-1}(b-3)+a$.
Prove that if $a, b, c \in S$, then: $(a) a * b \in S$ and $(b)(a * b) * c=a *(b * c)$.

- Paper 2

1 Given a positive integer n, denote by $\sigma(n)$ the sum of all positive divisors of n. We say that n is abundant if $\sigma(n)>2 n$. (For example, 12 is abundant since $\sigma(12)=28>2 \cdot 12$.) Let a, b be positive integers and suppose that a is abundant. Prove that $a b$ is abundant.

2 A circle Γ is inscribed in a quadrilateral $A B C D$. If $\angle A=\angle B=120^{\circ}, \angle D=90^{\circ}$ and $B C=1$, find, with proof, the length of $A D$.

3 Let A be a subset of $\{0,1,2, \ldots, 1997\}$ containing more than 1000 elements. Prove that either A contains a power of 2 (that is, a number of the form 2^{k} with $k=0,1,2, \ldots$) or there exist two distinct elements $a, b \in A$ such that $a+b$ is a power of 2 .

4 Let S be the set of natural numbers n satisfying the following conditions:
(i) n has 1000 digits, (ii) all the digits of n are odd, and (iii) any two adjacent digits of n differ by 2 .

Determine the number of elements of S.

5 Let p be an odd prime number and n a natural number. Then n is called $p-$ partitionable if $T=$ $\{1,2, \ldots, n\}$ can be partitioned into (disjoint) subsets $T_{1}, T_{2}, \ldots, T_{p}$ with equal sums of elements. For example, 6 is 3-partitionable since we can take $T_{1}=\{1,6\}, T_{2}=\{2,5\}$ and $T_{3}=\{3,4\}$. (a) Suppose that n is p-partitionable. Prove that p divides n or $n+1$. (b) Suppose that n is divisible by $2 p$. Prove that n is p-partitionable.

