

AoPS Community

www.artofproblemsolving.com/community/c583207

by laegolas, moldovan

-	Paper 1
1	Find all pairs of integers (x, y) satisfying $1 + 1996x + 1998y = xy$.
2	For a point <i>M</i> inside an equilateral triangle <i>ABC</i> , let <i>D</i> , <i>E</i> , <i>F</i> be the feet of the perpendiculars from <i>M</i> onto <i>BC</i> , <i>CA</i> , <i>AB</i> , respectively. Find the locus of all such points <i>M</i> for which $\angle FDE$ is a right angle.
3	Find all polynomials $p(x)$ satisfying the equation: $(x - 16)p(2x) = 16(x - 1)p(x)$ for all x.
4	Let a, b, c be nonnegative real numbers. Suppose that $a + b + c \ge abc$. Prove that: $a^2 + b^2 + c^2 \ge abc$.
5	Let <i>S</i> be the set of odd integers greater than 1. For each $x \in S$, denote by $\delta(x)$ the unique integer satisfying the inequality $2^{\delta(x)} < x < 2^{\delta(x)+1}$. For $a, b \in S$, define: $a * b = 2^{\delta(a)-1}(b-3) + a$.
	Prove that if $a, b, c \in S$, then: (a) $a * b \in S$ and (b) $(a * b) * c = a * (b * c)$.
_	Paper 2
1	Given a positive integer n , denote by $\sigma(n)$ the sum of all positive divisors of n . We say that n is $abundant$ if $\sigma(n) > 2n$. (For example, 12 is abundant since $\sigma(12) = 28 > 2 \cdot 12$.) Let a, b be positive integers and suppose that a is abundant. Prove that ab is abundant.
2	A circle Γ is inscribed in a quadrilateral <i>ABCD</i> . If $\angle A = \angle B = 120^{\circ}, \angle D = 90^{\circ}$ and <i>BC</i> = 1, find, with proof, the length of <i>AD</i> .
3	Let <i>A</i> be a subset of $\{0, 1, 2,, 1997\}$ containing more than 1000 elements. Prove that either <i>A</i> contains a power of 2 (that is, a number of the form 2^k with $k = 0, 1, 2,$) or there exist two distinct elements $a, b \in A$ such that $a + b$ is a power of 2.
4	Let S be the set of natural numbers n satisfying the following conditions: (i) n has 1000 digits, (ii) all the digits of n are odd, and (iii) any two adjacent digits of n differ by 2.
	Determine the number of elements of S.

AoPS Community

5 Let *p* be an odd prime number and *n* a natural number. Then *n* is called p - partitionable if $T = \{1, 2, ..., n\}$ can be partitioned into (disjoint) subsets $T_1, T_2, ..., T_p$ with equal sums of elements. For example, 6 is 3-partitionable since we can take $T_1 = \{1, 6\}, T_2 = \{2, 5\}$ and $T_3 = \{3, 4\}$. (*a*) Suppose that *n* is *p*-partitionable. Prove that *p* divides *n* or n + 1. (*b*) Suppose that *n* is divisible by 2p. Prove that *n* is *p*-partitionable.

AoPSOnline **AoPS**Academy **AoPS**