AoPS Community

www.artofproblemsolving.com/community/c583209
by laegolas, moldovan

- \quad Paper 1

1 Prove that if $x \neq 0$ is a real number, then: $x^{8}-x^{5}-\frac{1}{x}+\frac{1}{x^{4}} \geq 0$.
2 The distances from a point P inside an equilateral triangle to the vertices of the triangle are 3,4 , and 5 . Find the area of the triangle.

3 Show that no integer of the form $x y x y$ in base 10 can be a perfect cube. Find the smallest base $b>1$ for which there is a perfect cube of the form $x y x y$ in base b.

4 Show that a disk of radius 2 can be covered by seven (possibly overlapping) disks of radius 1.
5 If x is a real number such that $x^{2}-x$ and $x^{n}-x$ are integers for some $n \geq 3$, prove that x is an integer.

- \quad Paper 2

1 Find all positive integers n having exactly 16 divisors $1=d_{1}<d_{2}<\ldots<d_{16}=n$ such that $d_{6}=18$ and $d_{9}-d_{8}=17$.

2 Prove that if a, b, c are positive real numbers, then:
$\frac{9}{a+b+c} \leq 2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right) \leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.
3 (a) Prove that \mathbb{N} can be partitioned into three (mutually disjoint) sets such that, if $m, n \in \mathbb{N}$ and $|m-n|$ is 2 or 5 , then m and n are in different sets. (b) Prove that \mathbb{N} can be partitioned into four sets such that, if $m, n \in \mathbb{N}$ and $|m-n|$ is 2,3 , or 5 , then m and n are in different sets. Show, however, that \mathbb{N} cannot be partitioned into three sets with this property.

4 A sequence $\left(x_{n}\right)$ is given as follows: x_{0}, x_{1} are arbitrary positive real numbers, and $x_{n+2}=$ $\frac{1+x_{n+1}}{x_{n}}$ for $n \geq 0$. Find x_{1998}.

5 A triangle $A B C$ has integer sides, $\angle A=2 \angle B$ and $\angle C>90^{\circ}$. Find the minimum possible perimeter of this triangle.

