AoPS Community

www.artofproblemsolving.com/community/c583210
by laegolas, moldovan

- \quad Paper 1

1 Find all real numbers x which satisfy: $\frac{x^{2}}{(x+1-\sqrt{x+1})^{2}}<\frac{x^{2}+3 x+18}{(x+1)^{2}}$.
2 Show that there is a positive number in the Fibonacci sequence which is divisible by 1000 .
3 If $A D$ is the altitude, $B E$ the angle bisector, and $C F$ the median of a triangle $A B C$, prove that $A D, B E$, and $C F$ are concurrent if and only if:
$a^{2}(a-c)=\left(b^{2}-c^{2}\right)(a+c)$,
where a, b, c are the lengths of the sides $B C, C A, A B$, respectively.
4 A 100×100 square floor consisting of 10000 squares is to be tiled by rectangular 1×3 tiles, fitting exactly over three squares of the floor. (a) If a 2×2 square is removed from the center of the floor, prove that the rest of the floor can be tiled with the available tiles. (b) If, instead, a 2×2 square is removed from the corner, prove that such a tiling is not possble.

5 The sequence $u_{n}, n=0,1,2, \ldots$ is defined by $u_{0}=0, u_{1}=1$ and for each $n \geq 1, u_{n+1}$ is the smallest positive integer greater than u_{n} such that $\left\{u_{0}, u_{1}, \ldots, u_{n+1}\right\}$ contains no three elements in arithmetic progression. Find u_{100}.

- \quad Paper 2

1 Solve the system of equations:
$y^{2}=(x+8)\left(x^{2}+2\right), y^{2}-(8+4 x) y+\left(16+16 x-5 x^{2}\right)=0$.
$2 \quad$ A function $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfies: $(a) f(a b)=f(a) f(b)$ whenever a and b are coprime; $(b) f(p+q)=$ $f(p)+f(q)$ for all prime numbers p and q.
Prove that $f(2)=2, f(3)=3$ and $f(1999)=1999$.
3 The sum of positive real numbers a, b, c, d is 1 . Prove that:
$\frac{a^{2}}{a+b}+\frac{b^{2}}{b+c}+\frac{c^{2}}{c+d}+\frac{d^{2}}{d+a} \geq \frac{1}{2}$,
with equality if and only if $a=b=c=d=\frac{1}{4}$.
4 Find all positive integers m with the property that the fourth power of the number of (positive) divisors of m equals m.

5 A convex hexagon $A B C D E F$ satisfies $A B=B C, C D=D E, E F=F A$ and: $\angle A B C+$ $\angle C D E+\angle E F A=360^{\circ}$. Prove that the perpendiculars from A, C and E to $F B, B D$ and $D F$ respectively are concurrent.

