AoPS Community

www.artofproblemsolving.com/community/c583215
by laegolas, moldovan

- \quad Paper 1

1 Consider the set S of all numbers of the form $a(n)=n^{2}+n+1, n \in \mathbb{N}$. Show that the product $a(n) a(n+1)$ is in S for all $n \in \mathbb{N}$ and give an example of two elements s, t of S such that $s, t \notin S$.

2 Let $A B C D E$ be a regular pentagon of side length 1 . Let F be the midpoint of $A B$ and let G and H be the points on sides $C D$ and $D E$ respectively $\angle G F D=\angle H F D=30^{\circ}$. Show that the triangle $G F H$ is equilateral. A square of side a is inscribed in $\triangle G F H$ with one side of the square along $G H$. Prove that:
$F G=t=\frac{2 \cos 18^{\circ} \cos ^{2} 36^{\circ}}{\cos 6^{\circ}}$ and $a=\frac{t \sqrt{3}}{2+\sqrt{3}}$.
3 Let $f(x)=5 x^{13}+13 x^{5}+9 a x$. Find the least positive integer a such that 65 divides $f(x)$ for every integer x.

4 The sequence $a_{1}<a_{2}<\ldots<a_{M}$ of real numbers is called a weak arithmetic progression of length M if there exists an arithmetic progression $x_{0}, x_{1}, \ldots, x_{M}$ such that:
$x_{0} \leq a_{1}<x_{1} \leq a_{2}<x_{2} \leq \ldots \leq a_{M}<x_{M}$.
(a) Prove that if $a_{1}<a_{2}<a_{3}$ then $\left(a_{1}, a_{2}, a_{3}\right)$ is a weak arithmetic progression. (b) Prove that any subset of $\{0,1,2, \ldots, 999\}$ with at least 730 elements contains a weak arithmetic progression of length 10 .

5 Consider all parabolas of the form $y=x^{2}+2 p x+q$ for $p, q \in \mathbb{R}$ which intersect the coordinate axes in three distinct points. For such p, q, denote by $C_{p, q}$ the circle through these three intersection points. Prove that all circles $C_{p, q}$ have a point in common.

- \quad Paper 2

1 Prove that if x, y are nonnegative real numbers with $x+y=2$, then: $x^{2} y^{2}\left(x^{2}+y^{2}\right) \leq 2$.
2 In a cyclic quadrilateral $A B C D, a, b, c, d$ are its side lengths, Q its area, and R its circumradius. Prove that:
$R^{2}=\frac{(a b+c d)(a c+b d)(a d+b c)}{16 Q^{2}}$.
Deduce that $R \geq \frac{(a b c c)^{\frac{3}{4}}}{Q \sqrt{2}}$ with equality if and only if $A B C D$ is a square.

3 For each positive integer n find all positive integers m for which there exist positive integers $x_{1}<x_{2}<\ldots<x_{n}$ with:
$\frac{1}{x_{1}}+\frac{2}{x_{2}}+\ldots+\frac{n}{x_{n}}=m$.
4 Show that in each set of ten consecutive integers there is one that is coprime with each of the other integers. (For example, in the set $\{114,115, \ldots, 123\}$ there are two such numbers: 119 and 121.)

5 Let $p(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ be a polynomial with nonnegative real coefficients. Suppose that $p(4)=2$ and $p(16)=8$. Prove that $p(8) \leq 4$ and find all such p with $p(8)=4$.

