

AoPS Community

2004 Irish Math Olympiad

www.artofproblemsolving.com/community/c583581

by laegolas, evansmiley, Andreas, Jaxon

-	Paper 1
1	 (a) For which positive integers n, does 2n divide the sum of the first n positive integers? (b) Determine, with proof, those positive integers n (if any) which have the property that 2n + 1 divides the sum of the first n positive integers.
2	Each of the players in a tennis tournament played one match against each of the others. If every player won at least one match, show that there is a group A; B; C of three players for which A beat B, B beat C and C beat A.
3	AB is a chord of length 6 of a circle centred at O and of radius 5. Let $PQRS$ denote the square inscribed in the sector OAB such that P is on the radius OA , S is on the radius OB and Q and R are points on the arc of the circle between A and B . Find the area of $PQRS$.
4	Prove that there are only two real numbers x such that
	(x-1)(x-2)(x-3)(x-4)(x-5)(x-6) = 720
5	Let $a, b \ge 0$. Prove that
	$\sqrt{2}\left(\sqrt{a(a+b)^3} + b\sqrt{a^2 + b^2}\right) \le 3(a^2 + b^2)$
	with equality if and only if $a = b$.
_	Paper 2
1	Determine all pairs of prime numbers (p,q) , with $2 \le p, q < 100$, such that $p+6, p+10, q+4, q+10$ and $p+q+1$ are all prime numbers.
2	A and B are distinct points on a circle T. C is a point distinct from B such that $ AB = AC $, and such that BC is tangent to T at B. Suppose that the bisector of $\angle ABC$ meets AC at a point D inside T. Show that $\angle ABC > 72^{\circ}$.
3	Suppose <i>n</i> is an integer ≥ 2 . Determine the first digit after the decimal point in the decimal expansion of the number

 $\sqrt[3]{n^3 + 2n^2 + n}$

AoPS Community

4 Define the function m of the three real variables x, y, z by $m(x,y,z) = \max(x^2,y^2,z^2)$, x, y, $z \ R$. Determine, with proof, the minimum value of m if x,y,z vary in R subject to the following restrictions:

 $x + y + z = 0, x^2 + y^2 + z^2 = 1.$

5 Suppose p, q are distinct primes and S is a subset of $\{1, 2, ..., p - 1\}$. Let N(S) denote the number of solutions to the equation

$$\sum_{i=1}^q x_i \equiv 0 \mod p$$

where $x_i \in S$, i = 1, 2, ..., q. Prove that N(S) is a multiple of q.

Act of Problem Solving is an ACS WASC Accredited School.