Art of Problem Solving
www.artofproblemsolving.com/community/c583594 by laegolas, moldovan

- \quad Paper 1

1 Show that 2005^{2005} is a sum of two perfect squares, but not a sum of two perfect cubes.
2 Let D, E and F be points on the sides $B C, C A$ and $A B$ respectively of a triangle $A B C$, distinct from the vertices, such that $A D, B E$ and $C F$ meet at a point G. Prove that if the angles $A G E, C G D, B G F$ have equal area, then G is the centroid of $\triangle A B C$.

3 Prove that the sum of the lengths of the medians of a triangle is at least three quarters of its perimeter.

4 Determine the number of arrangements $a_{1}, a_{2}, \ldots, a_{10}$ of the numbers $1,2, \ldots, 10$ such that $a_{i}>$ $a_{2 i}$ for $1 \leq i \leq 5$ and $a_{i}>a_{2 i+1}$ for $1 \leq i \leq 4$.

5 Let a, b, c be nonnegative real numbers. Prove that: $\frac{1}{3}\left((a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right) \leq a^{2}+b^{2}+c^{2}-3 \sqrt[3]{a^{2} b^{2} c^{2}} \leq(a-b)^{2}+(b-c)^{2}+(c-a)^{2}$.

- \quad Paper 2

1 Let X be a point on the side $A B$ of a triangle $A B C$, different from A and B. Let P and Q be the incenters of the triangles $A C X$ and $B C X$ respectively, and let M be the midpoint of $P Q$. Prove that: $M C>M X$.

2 Using the digits: $1,2,3,4,5$, players A and B compose a 2005-digit number N by selecting one digit at a time: A selects the first digit, B the second, A the third and so on. Player A wins if and only if N is divisible by 9 . Who will win if both players play as well as possible?

3 Let x be an integer and y, z, w be odd positive integers. Prove that 17 divides $x^{y^{z^{w}}}-x^{y^{z}}$.
4 Find the first digit to the left and the first digit to the right of the decimal point in the expansion of $(\sqrt{2}+\sqrt{5})^{2000}$.

5 Suppose that m and n are odd integers such that $m^{2}-n^{2}+1$ divides $n^{2}-1$. Prove that $m^{2}-n^{2}+1$ is a perfect square.

