AoPS Community

www.artofproblemsolving.com/community/c583596
by laegolas, DK, Rushil, stvs_f, momo1729, darij grinberg

- \quad Paper 1

1 Are there integers x, y and z which satisfy the equation

$$
z^{2}=(x+1)\left(y^{2}-1\right)+n
$$

when (a) $n=2006$ (b) $n=2007 ?$
$2 \quad P$ and Q are points on the equal sides $A B$ and $A C$ respectively of an isosceles triangle $A B C$ such that $A P=C Q$. Moreover, neither P nor Q is a vertex of $A B C$. Prove that the circumcircle of the triangle $A P Q$ passes through the circumcenter of the triangle $A B C$.

3 Prove that a square of side 2.1 units can be completely covered by seven squares of side 1 unit.
Extra: Try to prove that 7 is the minimal amount.
$4 \quad$ Find the greatest value and the least value of $x+y$ where x, y are real numbers, with $x \geq-2$, $y \geq-3$ and

$$
x-2 \sqrt{x+2}=2 \sqrt{y+3}-y
$$

$5 \quad$ Find all functions $f: \mathbb{R} \mapsto \mathbb{R}$ such that $f(x y+f(x))=x f(y)+f(x)$ for all $x, y \in \mathbb{R}$.

- \quad Paper 2

1 The rooms of a building are arranged in a $m \times n$ rectangular grid (as shown below for the 5×6 case). Every room is connected by an open door to each adjacent room, but the only access to or from the building is by a door in the top right room. This door is locked with an elaborate system of $m n$ keys, one of which is located in every room of the building. A person is in the bottom left room and can move from there to any adjacent room. However, as soon as the person leaves a room, all the doors of that room are instantly and automatically locked. Find, with proof, all m and n for which it is possible for the person to collect all the keys and escape the building.

- starting position
* room with locked external door
$2 A B C$ is a triangle with points D, E on $B C$ with D nearer $B ; F, G$ on $A C$, with F nearer $C ; H$, K on $A B$, with H nearer A. Suppose that $A H=A G=1, B K=B D=2, C E=C F=4$, $\angle B=60^{\circ}$ and that D, E, F, G, H and K all lie on a circle. Find the radius of the incircle of triangle $A B C$.

3 let x, y are positive and $\in R$ that : $x+2 y=1$.prove that:

$$
\frac{1}{x}+\frac{2}{y} \geq \frac{25}{1+48 x y^{2}}
$$

$4 \quad$ Let n be a positive integer.

$5 \quad$ Let n and k be positive integers. There are given n circles in the plane. Every two of them intersect at two distinct points, and all points of intersection they determine are pairwise distinct (i. e. no three circles have a common point). No three circles have a point in common. Each intersection point must be colored with one of n distinct colors so that each color is used at least once and exactly k distinct colors occur on each circle. Find all values of $n \geq 2$ and k for which such a coloring is possible.
Proposed by Horst Sewerin, Germany

