AoPS Community

Mathematical Olympiad 2017

www.artofproblemsolving.com/community/c584444
by ManuelKahayon

1 Given $n \in \mathbb{N}$, let $\sigma(n)$ denote the sum of the divisors of n and $\phi(n)$ denote the number of integers $n \geq m$ for which $\operatorname{gcd}(m, n)=1$. Show that for all $n \in \mathbb{N}$,

$$
\frac{1}{\sigma(n)}+\frac{1}{\phi(n)} \geq \frac{2}{n}
$$

and determine when equality holds.
2 Find all positive real numbers $(a, b, c) \leq 1$ which satisfy

$$
\min \left\{\sqrt{\frac{a b+1}{a b c}} \sqrt{\frac{b c+1}{a b c}}, \sqrt{\frac{a c+1}{a b c}}\right\}=\sqrt{\frac{1-a}{a}}+\sqrt{\frac{1-b}{b}}+\sqrt{\frac{1-c}{c}}
$$

3 Each of the numbers in the set $A=\{1,2, \cdots, 2017\}$ is colored either red or white. Prove that for $n \geq 18$, there exists a coloring of the numbers in A such that any of its n-term arithmetic sequences contains both colors.
$4 \quad$ Circles \mathcal{C}_{1} and \mathcal{C}_{2} with centers at C_{1} and C_{2} respectively, intersect at two points A and B. Points P and Q are varying points on \mathcal{C}_{1} and \mathcal{C}_{2}, respectively, such that P, Q and B are collinear and B is always between P and Q. Let lines $P C_{1}$ and $Q C_{2}$ intersect at R, let I be the incenter of $\triangle P Q R$, and let S be the circumcenter of $\triangle P I Q$. Show that as P and Q vary, S traces the arc of a circle whose center is concyclic with A, C_{1} and C_{2}.

