

AoPS Community

Mathematical Olympiad 2017

www.artofproblemsolving.com/community/c584444 by ManuelKahayon

1 Given $n \in \mathbb{N}$, let $\sigma(n)$ denote the sum of the divisors of n and $\phi(n)$ denote the number of integers $n \ge m$ for which gcd(m, n) = 1. Show that for all $n \in \mathbb{N}$,

$$\frac{1}{\sigma(n)} + \frac{1}{\phi(n)} \ge \frac{2}{n}$$

and determine when equality holds.

2 Find all positive real numbers $(a, b, c) \le 1$ which satisfy

$$\min\left\{\sqrt{\frac{ab+1}{abc}}\sqrt{\frac{bc+1}{abc}},\sqrt{\frac{ac+1}{abc}}\right\} = \sqrt{\frac{1-a}{a}} + \sqrt{\frac{1-b}{b}} + \sqrt{\frac{1-c}{c}}$$

- **3** Each of the numbers in the set $A = \{1, 2, \dots, 2017\}$ is colored either red or white. Prove that for $n \ge 18$, there exists a coloring of the numbers in A such that any of its n-term arithmetic sequences contains both colors.
- **4** Circles C_1 and C_2 with centers at C_1 and C_2 respectively, intersect at two points A and B. Points P and Q are varying points on C_1 and C_2 , respectively, such that P, Q and B are collinear and B is always between P and Q. Let lines PC_1 and QC_2 intersect at R, let I be the incenter of ΔPQR , and let S be the circumcenter of ΔPIQ . Show that as P and Q vary, S traces the arc of a circle whose center is concyclic with A, C_1 and C_2 .

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱