

AoPS Community

2014 JBMO Shortlist

JBMO Shortlist 2014

www.artofproblemsolving.com/community/c584821

by Snakes, parmenides51, gavrilos, IstekOlympiadTeam, Itama, Orkhan-Ashraf_2002

_	Algebra
1	Solve in positive real numbers: $n + \sqrt{n} + \sqrt[3]{n} = 2014$
2	Let a, b, c be positive real numbers such that $abc = \frac{1}{8}$. Prove the inequality:
	$a^2 + b^2 + c^2 + a^2b^2 + b^2c^2 + c^2a^2 \ge \frac{15}{16}$
	When the equality holds?
3	For positive real numbers a, b, c with $abc = 1$ prove that $\left(a + \frac{1}{b}\right)^2 + \left(b + \frac{1}{c}\right)^2 + \left(c + \frac{1}{a}\right)^2 \ge 3(a + b + c + 1)$
4	With the conditions $a, b, c \in \mathbb{R}^+$ and $a + b + c = 1$, prove that
	$\frac{7+2b}{1+a} + \frac{7+2c}{1+b} + \frac{7+2a}{1+c} \ge \frac{69}{4}$
5	Let x, y and z be non-negative real numbers satisfying the equation $x + y + z = xyz$. Prove that $2(x^2 + y^2 + z^2) \ge 3(x + y + z)$.
6	Let a, b, c be positive real numbers. Prove that
	$\left((3a^2+1)^2 + 2\left(1+\frac{3}{b}\right)^2 \right) \left((3b^2+1)^2 + 2\left(1+\frac{3}{c}\right)^2 \right) \left((3c^2+1)^2 + 2\left(1+\frac{3}{a}\right)^2 \right) \ge 48^3$
7	$a, b, c \in \mathbb{R}^+$ and $a^2 + b^2 + c^2 = 48$. Prove that
	$a^2\sqrt{2b^3 + 16} + b^2\sqrt{2c^3 + 16} + c^2\sqrt{2a^3 + 16} \le 24^2$
	Lat be positive real surpluse such that 1. Drave the inequality

8 Let x, y, z be positive real numbers such that xyz = 1. Prove the inequality:

$$\frac{1}{x(ay+b)} + \frac{1}{y(az+b)} + \frac{1}{z(ax+b)} \ge 3$$

2014 JBMO Shortlist

AoPS Community

if:

(A) a = 0, b = 1(B) a = 1, b = 0(C) a + b = 1, a, b > 0When the equality holds?

9 Let *n* a positive integer and let $x_1, \ldots, x_n, y_1, \ldots, y_n$ real positive numbers such that $x_1 + \ldots + x_n = y_1 + \ldots + y_n = 1$. Prove that:

$$|x_1 - y_1| + \ldots + |x_n - y_n| \le 2 - \min_{1 \le i \le n} \frac{x_i}{y_i} - \min_{1 \le i \le n} \frac{y_i}{x_i}$$

Combinatorics

- **1** There are some real numbers on the board (at least two). In every step we choose two of them, for example a and b, and then we replace them with $\frac{ab}{a+b}$. We continue until there is one number. Prove that the last number does not depend on which order we choose the numbers to erase.
- 2 In a country with n towns, all the direct flights are of double destinations (back and forth). There are r > 2014 rootes between different pairs of towns, that include no more than one intermediate stop (direction of each root matters). Find the minimum possible value of n and the minimum possible r for that value of n.
- **3** For a positive integer *n*, two payers *A* and *B* play the following game: Given a pile of *s* stones, the players take turn alternatively with *A* going first. On each turn the player is allowed to take either one stone, or a prime number of stones, or a positive multiple of *n* stones. The winner is the one who takes the last stone. Assuming both *A* and *B* play perfectly, for how many values of *s* the player *A* cannot win?
- 4 $A = 1 \cdot 4 \cdot 7 \cdots 2014$. Find the last non-zero digit of A if it is known that $A \equiv 1 \mod 3$.
- Geometry
- **1** Let ABC be a triangle with $m(\angle B) = m(\angle C) = 40^{\circ}$ Line bisector of $\angle B$ intersects AC at point D. Prove that BD + DA = BC.
- **2** Acute-angled triangle ABC with AB < AC < BC and let be c(O, R) it's circumcircle. Diameters BD and CE are drawn. Circle $c_1(A, AE)$ interescts AC at K. Circle $c_2(A, AD)$ intersects BA at L. (A lies between B and L). Prove that lines EK and DL intersect at circle c.

by Evangelos Psychas (Greece)

AoPS Community

2014 JBMO Shortlist

- **3** Consider an acute triangle ABC of area S. Let $CD \perp AB$ ($D \in AB$), $DM \perp AC$ ($M \in AC$) and $DN \perp BC$ ($N \in BC$). Denote by H_1 and H_2 the orthocentres of the triangles MNC, respectively MND. Find the area of the quadrilateral AH_1BH_2 in terms of S.
- 4 Let ABC be an acute triangle such that $AB \neq AC$.Let M be the midpoint BC, H the orthocenter of $\triangle ABC$, O_1 the midpoint of AH and O_2 the circumcenter of $\triangle BCH$. Prove that O_1AMO_2 is a parallelogram.
- **5** Let ABC be a triangle with $AB \neq BC$; and let BD be the internal bisector of $\angle ABC$, $(D \in AC)$. Denote by M the midpoint of the arc AC which contains point B. The circumscribed circle of the triangle $\triangle BDM$ intersects the segment AB at point $K \neq B$. Let J be the reflection of A with respect to K. If $DJ \cap AM = \{O\}$, prove that the points J, B, M, O belong to the same circle.
- **6** Let ABCD be a quadrilateral whose diagonals are not perpendicular and whose sides AB and CD are not parallel.Let O be the intersection of its diagonals.Denote with H_1 and H_2 the orthocenters of triangles AOB and COD, respectively.If M and N are the midpoints of the segment lines AB and CD, respectively.Prove that the lines H_1H_2 and MN are parallel if and only if AC = BD.
- Number Theory
- 1 All letters in the word VUQAR are different and chosen from the set $\{1, 2, 3, 4, 5\}$. Find all solutions to the equation

$$\frac{(V+U+Q+A+R)^2}{V-U-Q+A+R} = V^{U^{QA^R}}.$$

- **2** Find all triples of primes (p, q, r) satisfying $3p^4 5q^4 4r^2 = 26$.
- **3** Find all integer solutions to the equation $x^2 = y^2(x + y^4 + 2y^2)$.
- Prove that there are not intgers a and b with conditions,
 i) 16a 9b is a prime number.
 ii) ab is a perfect square.
 iii) a + b is also perfect square.
- 5 Find all non-negative solutions to the equation $2013^x + 2014^y = 2015^z$

6 Vukasin, Dimitrije, Dusan, Stefan and Filip asked their teacher to guess three consecutive positive integers, after these true statements: Vukasin: "The sum of the digits of one number is prime number. The sum of the digits of another of the other two is, an even perfect number.(*n* is perfect if $\sigma(n) = 2n$). The sum of the digits of the third number equals to the number of it's positive divisors".

AoPS Community

2014 JBMO Shortlist

Dimitrije:"Everyone of those three numbers has at most two digits equal to 1 in their decimal representation".

Dusan:"If we add 11 to exactly one of them, then we have a perfect square of an integer" Stefan:"Everyone of them has exactly one prime divisor less than 10". Filip:"The three numbers are square free".

Professor found the right answer. Which numbers did he mention?

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.