

AoPS Community

2013 JBMO Shortlist

JBMO Shortlist 2013

www.artofproblemsolving.com/community/c584822

by Snakes, tenplusten, Igor, parmenides51, Steff9, IstekOlympiadTeam

-	Algebra
1	A1 Find all ordered triplets of (x, y, z) real numbers that satisfy the following system of equation $x^3 = \frac{z}{y} - \frac{2y}{z} y^3 = \frac{x}{z} - \frac{2z}{x} z^3 = \frac{y}{x} - \frac{2x}{y}$
2	A2 Find the maximum value of $ \sqrt{x^2 + 4x + 8} - \sqrt{x^2 + 8x + 17} $ where x is a real number.
3	Show that $\left(a+2b+\frac{2}{a+1}\right)\left(b+2a+\frac{2}{b+1}\right) \ge 16$
	for all positive real numbers a and b such that $ab \ge 1$.
-	Combinatorics
1	Find the maximum number of different integers that can be selected from the set $\{1, 2,, 2013\}$ so that no two exist that their difference equals to 17.
2	In a billiard with shape of a rectangle $ABCD$ with $AB = 2013$ and $AD = 1000$, a ball is launched along the line of the bisector of $\angle BAD$. Supposing that the ball is reflected on the sides with the same angle at the impact point as the angle shot, examine if it shall ever reach at vertex B.
3	 Let n be a positive integer. Two players, Alice and Bob, are playing the following game: Alice chooses n real numbers; not necessarily distinct. Alice writes all pairwise sums on a sheet of paper and gives it to Bob. (There are n(n-1)/2 such sums; not necessarily distinct.) Bob wins if he finds correctly the initial n numbers chosen by Alice with only one guess. Can Bob be sure to win for the following cases? a. n = 5 b. n = 6 c. n = 8 Justify your answer(s).
	[For example, when $n=4$, Alice may choose the numbers 1, 5, 7, 9, which have the same pairwise

sums as the numbers 2, 4, 6, 10, and hence Bob cannot be sure to win.]

1

-	Geometry
1	Let AB be a diameter of a circle ω and center O , OC a radius of ω perpendicular to AB,M be a point of the segment (OC) . Let N be the second intersection point of line AM with ω and P the intersection point of the tangents of ω at points N and B . Prove that points M, O, P, N are cocyclic.
	(Albania)
2	Circles ω_1 , ω_2 are externally tangent at point M and tangent internally with circle ω_3 at points K and L respectively. Let A and B be the points that their common tangent at point M of circles ω_1 and ω_2 intersect with circle ω_3 . Prove that if $\angle KAB = \angle LAB$ then the segment AB is diameter of circle ω_3 .
	Theoklitos Paragyiou (Cyprus)
3	Let <i>ABC</i> be an acute-angled triangle with $AB < AC$ and let <i>O</i> be the centre of its circumcircle ω . Let <i>D</i> be a point on the line segment <i>BC</i> such that $\angle BAD = \angle CAO$. Let <i>E</i> be the second point of intersection of ω and the line <i>AD</i> . If <i>M</i> , <i>N</i> and <i>P</i> are the midpoints of the line segments <i>BE</i> , <i>OD</i> and <i>AC</i> , respectively, show that the points <i>M</i> , <i>N</i> and <i>P</i> are collinear.
4	Let <i>I</i> be the incenter and <i>AB</i> the shortest side of the triangle <i>ABC</i> . The circle centered at <i>I</i> passing through <i>C</i> intersects the ray <i>AB</i> in <i>P</i> and the ray <i>BA</i> in <i>Q</i> . Let <i>D</i> be the point of tangency of the <i>A</i> -excircle of the triangle <i>ABC</i> with the side <i>BC</i> . Let <i>E</i> be the reflection of <i>C</i> with respect to the point <i>D</i> . Prove that $PE \perp CQ$.
5	A circle passing through the midpoint M of the side BC and the vertex A of the triangle ABC intersects the segments AB and AC for the second time in the points P and Q , respectively. Prove that if $\angle BAC = 60^{\circ}$, then $AP + AQ + PQ < AB + AC + \frac{1}{2}BC$.
6	Let <i>P</i> and <i>Q</i> be the midpoints of the sides <i>BC</i> and <i>CD</i> , respectively in a rectangle <i>ABCD</i> . Let <i>K</i> and <i>M</i> be the intersections of the line <i>PD</i> with the lines <i>QB</i> and <i>QA</i> , respectively, and let <i>N</i> be the intersection of the lines <i>PA</i> and <i>QB</i> . Let <i>X</i> , <i>Y</i> and <i>Z</i> be the midpoints of the segments <i>AN</i> , <i>KN</i> and <i>AM</i> , respectively. Let ℓ_1 be the line passing through <i>X</i> and perpendicular to <i>MK</i> , ℓ_2 be the line passing through <i>Y</i> and perpendicular to <i>AM</i> and ℓ_3 the line passing through <i>Z</i> and perpendicular to <i>KN</i> . Prove that the lines ℓ_1 , ℓ_2 and ℓ_3 are concurrent.
-	Number Theory

 $\boxed{N1}$ find all positive integers *n* for which $1^3 + 2^3 + \cdots + 16^3 + 17^n$ is a perfect square.

AoPS Community

2	Solve in integers $20^x + 13^y = 2013^z$.
3	Find all ordered pairs (a, b) of positive integers for which the numbers $\frac{a^3b-1}{a+1}$ and $\frac{b^3a+1}{b-1}$ are both positive integers.
4	A rectangle in xy Cartesian System is called latticed if all it's vertices have integer coordinates. a) Find a latticed rectangle of area 2013, whose sides are not parallel to the axes. b) Show that if a latticed rectangle has area 2011, then their sides are parallel to the axes.
5	Solve in positive integers: $\frac{1}{x^2} + \frac{y}{xz} + \frac{1}{z^2} = \frac{1}{2013}$.
6	Solve in integers the system of equations:
	$x^2 - y^2 = z$

 $3xy + (x - y)z = z^2$

AoPS Online 🔯 AoPS Academy 🙋 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.