AoPS Community

JBMO Shortlist 2013

www.artofproblemsolving.com/community/c584822
by Snakes, tenplusten, Igor, parmenides51, Steff9, IstekOlympiadTeam

- Algebra
$1 \quad A 1$ Find all ordered triplets of (x, y, z) real numbers that satisfy the following system of equation $x^{3}=\frac{z}{y}-\frac{2 y}{z} y^{3}=\frac{x}{z}-\frac{2 z}{x} z^{3}=\frac{y}{x}-\frac{2 x}{y}$
$2 \quad \mathrm{~A} 2$ Find the maximum value of $\left|\sqrt{x^{2}+4 x+8}-\sqrt{x^{2}+8 x+17}\right|$ where x is a real number.
3 Show that

$$
\left(a+2 b+\frac{2}{a+1}\right)\left(b+2 a+\frac{2}{b+1}\right) \geq 16
$$

for all positive real numbers a and b such that $a b \geq 1$.

- Combinatorics

1 Find the maximum number of different integers that can be selected from the set $\{1,2, \ldots, 2013\}$ so that no two exist that their difference equals to 17 .

2 In a billiard with shape of a rectangle $A B C D$ with $A B=2013$ and $A D=1000$, a ball is launched along the line of the bisector of $\angle B A D$. Supposing that the ball is reflected on the sides with the same angle at the impact point as the angle shot , examine if it shall ever reach at vertex B.

3 Let n be a positive integer. Two players, Alice and Bob, are playing the following game:

- Alice chooses n real numbers; not necessarily distinct.
- Alice writes all pairwise sums on a sheet of paper and gives it to Bob. (There are $\frac{n(n-1)}{2}$ such sums; not necessarily distinct.)
- Bob wins if he finds correctly the initial n numbers chosen by Alice with only one guess. Can Bob be sure to win for the following cases?
a. $n=5$
b. $n=6$
c. $n=8$

Justify your answer(s).
[For example, when $n=4$, Alice may choose the numbers $1,5,7,9$, which have the same pairwise sums as the numbers $2,4,6,10$, and hence Bob cannot be sure to win.]

- Geometry

1 Let $A B$ be a diameter of a circle ω and center $O, O C$ a radius of ω perpendicular to $A B, M$ be a point of the segment $(O C)$. Let N be the second intersection point of line $A M$ with ω and P the intersection point of the tangents of ω at points N and B. Prove that points M, O, P, N are cocyclic.
(Albania)
2 Circles ω_{1}, ω_{2} are externally tangent at point M and tangent internally with circle ω_{3} at points K and L respectively. Let A and B be the points that their common tangent at point M of circles ω_{1} and ω_{2} intersect with circle ω_{3}. Prove that if $\angle K A B=\angle L A B$ then the segment $A B$ is diameter of circle ω_{3}.

Theoklitos Paragyiou (Cyprus)

3 Let $A B C$ be an acute-angled triangle with $A B<A C$ and let O be the centre of its circumcircle ω. Let D be a point on the line segment $B C$ such that $\angle B A D=\angle C A O$. Let E be the second point of intersection of ω and the line $A D$. If M, N and P are the midpoints of the line segments $B E, O D$ and $A C$, respectively, show that the points M, N and P are collinear.

4 Let I be the incenter and $A B$ the shortest side of the triangle $A B C$. The circle centered at I passing through C intersects the ray $A B$ in P and the ray $B A$ in Q. Let D be the point of tangency of the A-excircle of the triangle $A B C$ with the side $B C$. Let E be the reflection of C with respect to the point D. Prove that $P E \perp C Q$.
$5 \quad$ A circle passing through the midpoint M of the side $B C$ and the vertex A of the triangle $A B C$ intersects the segments $A B$ and $A C$ for the second time in the points P and Q, respectively. Prove that if $\angle B A C=60^{\circ}$, then $A P+A Q+P Q<A B+A C+\frac{1}{2} B C$.
$6 \quad$ Let P and Q be the midpoints of the sides $B C$ and $C D$, respectively in a rectangle $A B C D$. Let K and M be the intersections of the line $P D$ with the lines $Q B$ and $Q A$, respectively, and let N be the intersection of the lines $P A$ and $Q B$. Let X, Y and Z be the midpoints of the segments $A N, K N$ and $A M$, respectively. Let ℓ_{1} be the line passing through X and perpendicular to $M K$, ℓ_{2} be the line passing through Y and perpendicular to $A M$ and ℓ_{3} the line passing through Z and perpendicular to $K N$. Prove that the lines ℓ_{1}, ℓ_{2} and ℓ_{3} are concurrent.

- Number Theory
$1 \quad N 1$ find all positive integers n for which $1^{3}+2^{3}+\cdots+16^{3}+17^{n}$ is a perfect square.

2 Solve in integers $20^{x}+13^{y}=2013^{z}$.
3 Find all ordered pairs (a, b) of positive integers for which the numbers $\frac{a^{3} b-1}{a+1}$ and $\frac{b^{3} a+1}{b-1}$ are both positive integers.

4 A rectangle in $x y$ Cartesian System is called latticed if all it's vertices have integer coordinates.
a) Find a latticed rectangle of area 2013, whose sides are not parallel to the axes.
b) Show that if a latticed rectangle has area 2011, then their sides are parallel to the axes.

5 Solve in positive integers: $\frac{1}{x^{2}}+\frac{y}{x z}+\frac{1}{z^{2}}=\frac{1}{2013}$.
6 Solve in integers the system of equations:

$$
\begin{gathered}
x^{2}-y^{2}=z \\
3 x y+(x-y) z=z^{2}
\end{gathered}
$$

