AoPS Community

JBMO Shortlist 2009

www.artofproblemsolving.com/community/c584835
by Snakes, parmenides51, tenplusten, delegat

- Algebra

1 Determine all integers a, b, c satisfying identities: $a+b+c=15(a-3)^{3}+(b-5)^{3}+(c-7)^{3}=540$
$2 \quad A 2$ Find the maximum value of $z+x$ if x, y, z are satisfying the given conditions. $x^{2}+y^{2}=4$ $z^{2}+t^{2}=9 x t+y z \geq 6$

3 Find all values of the real parameter a, for which the system $(|x|+|y|-2)^{2}=1 y=a x+5$ has exactly three solutions

4 Let x, y, z be real numbers such that $0<x, y, z<1$ and $x y z=(1-x)(1-y)(1-z)$. Show that at least one of the numbers $(1-x) y,(1-y) z,(1-z) x$ is greater than or equal to $\frac{1}{4}$
$5 \quad$ A5 Let x, y, z be positive reals. Prove that $\left(x^{2}+y+1\right)\left(x^{2}+z+1\right)\left(y^{2}+x+1\right)\left(y^{2}+z+1\right)\left(z^{2}+\right.$ $x+1)\left(z^{2}+y+1\right) \geq(x+y+z)^{6}$

- Combinatorics

1 Each one of 2009 distinct points in the plane is coloured in blue or red, so that on every bluecentered unit circle there are exactly two red points. Find the gratest possible number of blue points.

2 Five players (A, B, C, D, E) take part in a bridge tournament. Every two players must play (as partners) against every other two players. Any two given players can be partners not more than once per a day. What is the least number of days needed for this tournament?

3 a) In how many ways can we read the word SARAJEVO from the table below, if it is allowed to jump from cell to an adjacent cell (by vertex or a side) cell?
b) After the letter in one cell was deleted, only 525 ways to read the word SARAJEVO remained. Find all possible positions of that cell.

4 Determine all pairs of (m, n) such that is possible to tile the table $m \times n$ with figure "corner" as in figure with condition that in that tilling does not exist rectangle (except $m \times n$) regularly covered with figures.

```
- Geometry
```

1 Parallelogram $A B C D$ is given with $A C>B D$, and O intersection point of $A C$ and $B D$. Circle with center at O and radius $O A$ intersects extensions of $A D$ and $A B$ at points G and L, respectively. Let Z be intersection point of lines $B D$ and $G L$. Prove that $\angle Z C A=90^{\circ}$.

2 In right trapezoid $A B C D(A B \| C D)$ the angle at vertex B measures 75°. Point H is the foot of the perpendicular from point A to the line $B C$. If $B H=D C$ and $A D+A H=8$, find the area of $A B C D$.

3 Parallelogram $A B C D$ with obtuse angle $\angle A B C$ is given. After rotation of the triangle $A C D$ around the vertex C, we get a triangle $C D^{\prime} A^{\prime}$, such that points B, C and D^{\prime} are collinear. Extensions of median of triangle $C D^{\prime} A^{\prime}$ that passes through D^{\prime} intersects the straight line $B D$ at point P. Prove that $P C$ is the bisector of the angle $\angle B P D^{\prime}$.

4 Let $A B C D E$ be a convex pentagon such that $A B+C D=B C+D E$ and k a circle with center on side $A E$ that touches the sides $A B, B C, C D$ and $D E$ at points P, Q, R and S (different from vertices of the pentagon) respectively. Prove that lines $P S$ and $A E$ are parallel.

5 Let A, B, C and O be four points in plane, such that $\angle A B C>90^{\circ}$ and $O A=O B=O C$. Define the point $D \in A B$ and the line l such that $D \in l, A C \perp D C$ and $l \perp A O$. Line l cuts $A C$ at E and circumcircle of $A B C$ at F. Prove that the circumcircles of triangles $B E F$ and $C F D$ are tangent at F.

- Number Theory

1 Solve in non-negative integers the equation $2^{a} 3^{b}+9=c^{2}$
2 A group of $n>1$ pirates of different age owned total of 2009 coins. Initially each pirate (except the youngest one) had one coin more than the next younger.
a) Find all possible values of n.
b) Every day a pirate was chosen. The chosen pirate gave a coin to each of the other pirates. If $n=7$, find the largest possible number of coins a pirate can have after several days.
$3 \quad$ Find all pairs (x, y) of integers which satisfy the equation $(x+y)^{2}\left(x^{2}+y^{2}\right)=2009^{2}$
4 Determine all prime numbers $p_{1}, p_{2}, \ldots, p_{12}, p_{13}, p_{1} \leq p_{2} \leq \ldots \leq p_{12} \leq p_{13}$, such that $p_{1}^{2}+p_{2}^{2}+\ldots+p_{12}^{2}=p_{13}^{2}$ and one of them is equal to $2 p_{1}+p_{9}$.

5 Show that there are infinitely many positive integers c, such that the following equations both have solutions in positive integers: $\left(x^{2}-c\right)\left(y^{2}-c\right)=z^{2}-c$ and $\left(x^{2}+c\right)\left(y^{2}-c\right)=z^{2}-c$.

