## AoPS Community

## JBMO Shortlist 2004

www.artofproblemsolving.com/community/c584845
by Snakes, parmenides51, pbornsztein

## - Geometry

1 Two circles $C_{1}$ and $C_{2}$ intersect in points $A$ and $B$. A circle $C$ with center in $A$ intersect $C_{1}$ in $M$ and $P$ and $C_{2}$ in $N$ and $Q$ so that $N$ and $Q$ are located on different sides wrt $M P$ and $A B>A M$. Prove that $\angle M B Q=\angle N B P$.

2 Let $E, F$ be two distinct points inside a parallelogram $A B C D$. Determine the maximum possible number of triangles having the same area with three vertices from points $A, B, C, D, E, F$.

3 Let $A B C$ be a triangle inscribed in circle $C$. Circles $C_{1}, C_{2}, C_{3}$ are tangent internally with circle $C$ in $A_{1}, B_{1}, C_{1}$ and tangent to sides $[B C],[C A],[A B]$ in points $A_{2}, B_{2}, C_{2}$ respectively, so that $A, A_{1}$ are on one side of $B C$ and so on. Lines $A_{1} A_{2}, B_{1} B_{2}$ and $C_{1} C_{2}$ intersect the circle $C$ for second time at points $A^{\prime}, B^{\prime}$ and $C^{\prime}$, respectively. If $M=B B^{\prime} \cap C C^{\prime}$, prove that $m\left(\angle M A A^{\prime}\right)=90^{\circ}$.

4 Let $A B C$ be a triangle with $m(\angle C)=90^{\circ}$ and the points $D \in[A C], E \in[B C]$. Inside the triangle we construct the semicircles $C_{1}, C_{2}, C_{3}, C_{4}$ of diameters $[A C],[B C],[C D],[C E]$ and let $\{C, K\}=C_{1} \cap C_{2},\{C, M\}=C_{3} \cap C_{4},\{C, L\}=C_{2} \cap C_{3},\{C, N\}=C_{1} \cap C_{4}$. Show that points $K, L, M, N$ are concyclic.

5 Let $A B C$ be an isosceles triangle with $A C=B C$, let $M$ be the midpoint of its side $A C$, and let $Z$ be the line through $C$ perpendicular to $A B$. The circle through the points $B, C$, and $M$ intersects the line $Z$ at the points $C$ and $Q$. Find the radius of the circumcircle of the triangle $A B C$ in terms of $m=C Q$.

