Art of Problem Solving

AoPS Community

JBMO Shortlist 2007

www.artofproblemsolving.com/community/c584846
by Snakes, pohoatza, tenplusten, parmenides51

- Algebra

1 Let a be positive real number such that $a^{3}=6(a+1)$. Prove that the equation $x^{2}+a x+a^{2}-6=0$ has no real solution.
$2 \quad \mathrm{~A} 2$ Prove that for all Positive reals $a, b, c \frac{a^{2}-b c}{2 a^{2}+b c}+\frac{b^{2}-c a}{2 b^{2}+c a}+\frac{c^{2}-a b}{2 c^{2}+a b} \leq 0$
3 Let A be a set of positive integers containing the number 1 and at least one more element. Given that for any two different elements m, n of A the number $\frac{m+1}{(m+1, n+1)}$ is also an element of A, prove that A coincides with the set of positive integers.
$4 \quad$ Let a and b be positive integers bigger than 2. Prove that there exists a positive integer k and a sequence $n_{1}, n_{2}, \ldots, n_{k}$ consisting of positive integers, such that $n_{1}=a, n_{k}=b$, and ($n_{i}+$ $\left.n_{i+1}\right) \mid n_{i} n_{i+1}$ for all $i=1,2, \ldots, k-1$

5 The real numbers x, y, z, m, n are positive, such that $m+n \geq 2$. Prove that $x \sqrt{y z(x+m y)(x+n z)}+$ $y \sqrt{x z(y+m x)(y+n z)}+z \sqrt{x y(z+m x)(x+n y)} \leq \frac{3(m+n)}{8}(x+y)(y+z)(z+x)$

- Combinatorics

1 We call a tiling of an $m \times n$ rectangle with corners (see figure below) "regular" if there is no sub-rectangle which is tiled with corners. Prove that if for some m and n there exists a "regular" tiling of the $m \times n$ rectangular then there exists a "regular" tiling also for the $2 m \times 2 n$ rectangle.

2 Given are 50 points in the plane, no three of them belonging to a same line. Each of these points is colored using one of four given colors. Prove that there is a color and at least 130 scalene triangles with vertices of that color.

3 The nonnegative integer n and $(2 n+1) \times(2 n+1)$ chessboard with squares colored alternatively black and white are given. For every natural number m with $1<m<2 n+1$, an $m \times m$ square of the given chessboard that has more than half of its area colored in black, is called a B-square. If the given chessboard is a B-square, fi nd in terms of n the total number of B-squares of this chessboard.

- Geometry

1 G1 Let M be interior point of the triangle $A B C$ with $; \mathrm{BAC}=70$ and $; \mathrm{ABC}=80$ If $; \mathrm{ACM}=10$ and ¡CBM $=20$. Prove that $A B=M C$

2 Let $A B C D$ be a convex quadrilateral with $\angle D A C=\angle B D C=36^{\circ}, \angle C B D=18^{\circ}$ and $\angle B A C=$ 72°. The diagonals and intersect at point P. Determine the measure of $\angle A P D$.

3 Let the inscribed circle of the triangle $\triangle A B C$ touch side $B C$ at M, side $C A$ at N and side $A B$ at P. Let D be a point from $[N P]$ such that $\frac{D P}{D N}=\frac{B D}{C D}$. Show that $D M \perp P N$.
$4 \quad$ Let S be a point inside $\angle p O q$, and let k be a circle which contains S and touches the legs $O p$ and $O q$ in points P and Q respectively. Straight line s parallel to $O p$ from S intersects $O q$ in a point R. Let T be the intersection point of the ray $P S$ and circumscribed circle of $\triangle S Q R$ and $T \neq S$. Prove that $O T / / S Q$ and $O T$ is a tangent of the circumscribed circle of $\triangle S Q R$.

- Number Theory

1 Find all the pairs positive integers (x, y) such that $\frac{1}{x}+\frac{1}{y}+\frac{1}{[x, y]}+\frac{1}{(x, y)}=\frac{1}{2}$, where (x, y) is the greatest common divisor of x, y and $[x, y]$ is the least common multiple of x, y.

2 Prove that the equation $x^{2006}-4 y^{2006}-2006=4 y^{2007}+2007 y$ has no solution in the set of the positive integers.

3 Let $n>1$ be a positive integer and p a prime number such that $n \mid(p-1)$ and $p \mid\left(n^{6}-1\right)$. Prove that at least one of the numbers $p-n$ and $p+n$ is a perfect square.

4 Let a, b be two co-prime positive integers. A number is called good if it can be written in the form $a x+b y$ for non-negative integers x, y. Defi ne the function $f: Z \rightarrow Z$ as $f(n)=n-n_{a}-n_{b}$, where s_{t} represents the remainder of s upon division by t. Show that an integer n is good if and only if the in finite sequence $n, f(n), f(f(n)), \ldots$ contains only non-negative integers.

5 Prove that if p is a prime number, then $7 p+3^{p}-4$ is not a perfect square.

