

AoPS Community

2016 Romania Team Selection Tests

Romania Team Selection Tests 2016

www.artofproblemsolving.com/community/c585786

by MarkBcc168, ThE-dArK-IOrD, va2010, ABCDE, CantonMathGuy

– Day 1

- **1** Two circles, ω_1 and ω_2 , centered at O_1 and O_2 , respectively, meet at points A and B. A line through B meet ω_1 again at C, and ω_2 again at D. The tangents to ω_1 and ω_2 at C and D, respectively, meet at E, and the line AE meets the circle ω through A, O_1 , O_2 again at F. Prove that the length of the segment EF is equal to the diameter of ω .
- **2** Let *n* be a positive integer, and let S_1, S_2, S_n be a collection of finite non-empty sets such that

$$\sum_{1 \le i < j \le n} \frac{|S_i \cap S_j|}{|S_i||S_j|} < 1$$

Prove that there exist pairwise distinct elements x_1, x_2, x_n such that x_i is a member of S_i for each index *i*.

3 Let *n* be a positive integer, and let $a_1, a_2, ..., a_n$ be pairwise distinct positive integers. Show that

$$\sum_{k=1}^{n} \frac{1}{[a_1, a_2, , a_k]} < 4,$$

where $[a_1, a_2, a_k]$ is the least common multiple of the integers a_1, a_2, a_k .

- **4** Determine the integers $k \ge 2$ for which the sequence $\left\{\binom{2n}{n} \pmod{k}\right\}_{n \in \mathbb{Z}_{\ge 0}}$ is eventually periodic.
- Day 2
- 1 Given positive integers k and m, show that m and $\binom{n}{k}$ are coprime for infinitely many integers $n \ge k$.
- **2** Let *ABC* be an acute triangle and let *M* be the midpoint of *AC*. A circle ω passing through *B* and *M* meets the sides *AB* and *BC* at points *P* and *Q* respectively. Let *T* be the point such that *BPTQ* is a parallelogram. Suppose that *T* lies on the circumcircle of *ABC*. Determine all possible values of $\frac{BT}{BM}$.
- **3** Prove that:

(a) If $(a_n)_{n\geq 1}$ is a strictly increasing sequence of positive integers such that $\frac{a_{2n-1}+a_{2n}}{a_n}$ is a constant as n runs through all positive integers, then this constant is an integer greater than or

AoPS Community

2016 Romania Team Selection Tests

ea	ual	to	4:	and
υų	uui	ιU	ч,	anu

(b) Given an integer $N \ge 4$, there exists a strictly increasing sequene $(a_n)_{n\ge 1}$ of positive integers such that $\frac{a_{2n-1}+a_{2n}}{a_n} = N$ for all indices n.

Given any positive integer *n*, prove that:
(a) Every *n* points in the closed unit square [0, 1] × [0, 1] can be joined by a path of length less than 2√n + 4; and
(b) There exist *n* points in the closed unit square [0, 1] × [0, 1] that cannot be joined by a path of length less than √n - 1.

Day 3 Given a positive integer n, determine all functions f from the first n positive integers to the positive integers, satisfying the following two conditions: (1) ∑_{k=1}ⁿ f(k) = 2n; and (2) ∑_{k∈K} f(k) = n for no subset K of the first n positive integers.

- **2** Given a positive integer k and an integer $a \equiv 3 \pmod{8}$, show that $a^m + a + 2$ is divisible by 2^k for some positive integer m.
- **3** Given a positive integer *n*, show that for no set of integers modulo *n*, whose size exceeds $1 + \sqrt{n+4}$, is it possible that the pairwise sums of unordered pairs be all distinct.
- 4 Let *ABCD* be a convex quadrilateral, and let *P*, *Q*, *R*, and *S* be points on the sides *AB*, *BC*, *CD*, and *DA*, respectively. Let the line segment *PR* and *QS* meet at *O*. Suppose that each of the quadrilaterals *APOS*, *BQOP*, *CROQ*, and *DSOR* has an incircle. Prove that the lines *AC*, *PQ*, and *RS* are either concurrent or parallel to each other.
- Day 4
- 1 Determine the planar finite configurations C consisting of at least 3 points, satisfying the following conditions; if x and y are distinct points of C, there exist $z \in C$ such that xyz are three vertices of equilateral triangles
- **2** Let ABC be a triangle with $CA \neq CB$. Let D, F, and G be the midpoints of the sides AB, AC, and BC respectively. A circle Γ passing through C and tangent to AB at D meets the segments AF and BG at H and I, respectively. The points H' and I' are symmetric to H and I about F and G, respectively. The line H'I' meets CD and FG at Q and M, respectively. The line CM meets Γ again at P. Prove that CQ = QP.

Proposed by El Salvador

3 Given a prime *p*, prove that the sum $\sum_{k=1}^{\lfloor \frac{q}{p} \rfloor} k^{p-1}$ is not divisible by *q* for all but finitely many primes *q*.

AoPS Community

-	Day 5
1	Determine the positive integers expressible in the form $\frac{x^2+y}{xy+1}$, for at least 2 pairs (x,y) of positive integers
2	Determine all $f : \mathbb{Z}^+ \to \mathbb{Z}^+$ such that $f(m) \ge m$ and $f(m+n) \mid f(m) + f(n)$ for all $m, n \in \mathbb{Z}^+$
3	A set $S = \{s_1, s_2,, s_k\}$ of positive real numbers is "polygonal" if $k \ge 3$ and there is a non- degenerate planar k -gon whose side lengths are exactly $s_1, s_2,, s_k$; the set S is multipolygo- nal if in every partition of S into two subsets, each of which has at least three elements, exactly one of these two subsets in polygonal. Fix an integer $n \ge 7$. (a) Does there exist an n -element multipolygonal set, removal of whose maximal element leaves a multipolygonal set? (b) Is it possible that every $(n-1)$ -element subset of an n -element set of positive real num- bers be multipolygonal?

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.