Art of Problem Solving

AoPS Community

Romania Team Selection Tests 2016

www.artofproblemsolving.com/community/c585786
by MarkBcc168, ThE-dArK-IOrD, va2010, ABCDE, CantonMathGuy

- Day 1

1 Two circles, ω_{1} and ω_{2}, centered at O_{1} and O_{2}, respectively, meet at points A and B. A line through B meet ω_{1} again at C, and ω_{2} again at D. The tangents to ω_{1} and ω_{2} at C and D, respectively, meet at E, and the line $A E$ meets the circle ω through A, O_{1}, O_{2} again at F. Prove that the length of the segment $E F$ is equal to the diameter of ω.

2 Let n be a positive integer, and let S_{1}, S_{2}, S_{n} be a collection of finite non-empty sets such that

$$
\sum_{1 \leq i<j \leq n} \frac{\left|S_{i} \cap S_{j}\right|}{\left|S_{i}\right|\left|S_{j}\right|}<1
$$

Prove that there exist pairwise distinct elements $x_{1}, x_{2},, x_{n}$ such that x_{i} is a member of S_{i} for each index i.

3 Let n be a positive integer, and let $a_{1}, a_{2}, . ., a_{n}$ be pairwise distinct positive integers. Show that

$$
\sum_{k=1}^{n} \frac{1}{\left[a_{1}, a_{2},, a_{k}\right]}<4
$$

where $\left[a_{1}, a_{2},, a_{k}\right]$ is the least common multiple of the integers $a_{1}, a_{2},, a_{k}$.
4 Determine the integers $k \geq 2$ for which the sequence $\left\{\binom{2 n}{n}(\bmod k)\right\}_{n \in \mathbb{Z} \geq 0}$ is eventually periodic.

- Day 2

1 Given positive integers k and m, show that m and $\binom{n}{k}$ are coprime for infinitely many integers $n \geq k$.

2 Let $A B C$ be an acute triangle and let M be the midpoint of $A C$. A circle ω passing through B and M meets the sides $A B$ and $B C$ at points P and Q respectively. Let T be the point such that $B P T Q$ is a parallelogram. Suppose that T lies on the circumcircle of $A B C$. Determine all possible values of $\frac{B T}{B M}$.

3 Prove that:

(a) If $\left(a_{n}\right)_{n \geq 1}$ is a strictly increasing sequence of positive integers such that $\frac{a_{2 n-1}+a_{2 n}}{a_{n}}$ is a constant as n runs through all positive integers, then this constant is an integer greater than or

AoPS Community

2016 Romania Team Selection Tests

equal to 4; and
(b) Given an integer $N \geq 4$, there exists a strictly increasing sequene $\left(a_{n}\right)_{n \geq 1}$ of positive integers such that $\frac{a_{2 n-1}+a_{2 n}}{a_{n}}=N$ for all indices n.

4 Given any positive integer n, prove that:
(a) Every n points in the closed unit square $[0,1] \times[0,1]$ can be joined by a path of length less than $2 \sqrt{n}+4$; and
(b) There exist n points in the closed unit square $[0,1] \times[0,1]$ that cannot be joined by a path of length less than $\sqrt{n}-1$.

- Day 3

1 Given a positive integer n, determine all functions f from the first n positive integers to the positive integers, satisfying the following two conditions: (1) $\sum_{k=1}^{n} f(k)=2 n$; and (2) $\sum_{k \in K} f(k)=$ n for no subset K of the first n positive integers.

2 Given a positive integer k and an integer $a \equiv 3(\bmod 8)$, show that $a^{m}+a+2$ is divisible by 2^{k} for some positive integer m.

3 Given a positive integer n, show that for no set of integers modulo n, whose size exceeds $1+\sqrt{n+4}$, is it possible that the pairwise sums of unordered pairs be all distinct.

4 Let $A B C D$ be a convex quadrilateral, and let P, Q, R, and S be points on the sides $A B, B C$, $C D$, and $D A$, respectively. Let the line segment $P R$ and $Q S$ meet at O. Suppose that each of the quadrilaterals $A P O S, B Q O P, C R O Q$, and $D S O R$ has an incircle. Prove that the lines $A C$, $P Q$, and $R S$ are either concurrent or parallel to each other.

- Day 4

1 Determine the planar finite configurations C consisting of at least 3 points, satisfying the following conditions; if x and y are distinct points of C, there exist $z \in C$ such that $x y z$ are three vertices of equilateral triangles

2 Let $A B C$ be a triangle with $C A \neq C B$. Let D, F, and G be the midpoints of the sides $A B$, $A C$, and $B C$ respectively. A circle Γ passing through C and tangent to $A B$ at D meets the segments $A F$ and $B G$ at H and I, respectively. The points H^{\prime} and I^{\prime} are symmetric to H and I about F and G, respectively. The line $H^{\prime} I^{\prime}$ meets $C D$ and $F G$ at Q and M, respectively. The line $C M$ meets Γ again at P. Prove that $C Q=Q P$.

Proposed by El Salvador
3 Given a prime p, prove that the sum $\sum_{k=1}^{\left\lfloor\frac{q}{p}\right\rfloor} k^{p-1}$ is not divisible by q for all but finitely many primes q.

- Day 5

1 Determine the positive integers expressible in the form $\frac{x^{2}+y}{x y+1}$, for at least 2 pairs (x, y) of positive integers
$2 \quad$ Determine all $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$such that $f(m) \geq m$ and $f(m+n) \mid f(m)+f(n)$ for all $m, n \in \mathbb{Z}^{+}$
3 A set $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ of positive real numbers is "polygonal" if $k \geq 3$ and there is a nondegenerate planar k-gon whose side lengths are exactly $s_{1}, s_{2}, \ldots, s_{k}$; the set S is multipolygonal if in every partition of S into two subsets,each of which has at least three elements, exactly one of these two subsets in polygonal. Fix an integer $n \geq 7$.
(a) Does there exist an n-element multipolygonal set, removal of whose maximal element leaves a multipolygonal set?
(b) Is it possible that every $(n-1)$-element subset of an n-element set of positive real numbers be multipolygonal?

