AoPS Community

JBMO Shortlist 2005

www.artofproblemsolving.com/community/c586190
by Snakes, Valentin Vornicu, parmenides51, MinatoF

- Geometry

1 Let $A B C$ be an acute-angled triangle inscribed in a circle k. It is given that the tangent from A to the circle meets the line $B C$ at point P. Let M be the midpoint of the line segment $A P$ and R be the second intersection point of the circle k with the line $B M$. The line $P R$ meets again the circle k at point S different from R.

Prove that the lines $A P$ and $C S$ are parallel.
2 Let $A B C D$ be an isosceles trapezoid with $A B=A D=B C, A B / / C D, A B>C D$. Let $E=$ $A C \cap B D$ and N symmetric to B wrt $A C$. Prove that the quadrilateral $A N D E$ is cyclic.

3 Let $A B C D E F$ be a regular hexagon and $M \in(D E), N \in(C D)$ such that $m(\widehat{A M N})=90^{\circ}$ and $A N=C M \sqrt{2}$. Find the value of $\frac{D M}{M E}$.

4 Let $A B C$ be an isosceles triangle $(A B=A C)$ so that $\angle A<2 \angle B$. Let D, Z points on the extension of height $A M$ so that $\angle C B D=\angle A$ and $\angle Z B A=90^{\circ}$. Let E the orthogonal projection of M on height $B F$, and let K the orthogonal projection of Z on $A E$. Prove that $\angle K D Z=$ $\angle K D B=\angle K Z B$.

5 Let O be the center of the concentric circles C_{1}, C_{2} of radii 3 and 5 respectively. Let $A \in C_{1}, B \in$ C_{2} and C point so that triangle $A B C$ is equilateral. Find the maximum length of $[O C]$.

6 Let C_{1}, C_{2} be two circles intersecting at points A, P with centers O, K respectively. Let B, C be the symmetric of A wrt O, K in circles C_{1}, C_{2} respectively. A random line passing through A intersects circles C_{1}, C_{2} at D, E respectively. Prove that the center of circumcircle of triangle $D E P$ lies on the circumcircle of triangle $O K P$.

7 Let $A B C D$ be a parallelogram. $P \in(C D), Q \in(A B), M=A P \cap D Q, N=B P \cap C Q, K=$ $M N \cap A D, L=M N \cap B C$. Prove that $B L=D K$.

