AoPS Community

www.artofproblemsolving.com/community/c587312 by laegolas, bnick17

- \quad Paper 1

1 Let p_{1}, p_{2}, p_{3} and p_{4} be four different prime numbers satisying the equations
$2 p_{1}+3 p_{2}+5 p_{3}+7 p_{4}=162$
$11 p_{1}+7 p_{2}+5 p_{3}+4 p_{4}=162$
Find all possible values of the product $p_{1} p_{2} p_{3} p_{4}$
2 For positive real numbers a, b, c and d such that $a^{2}+b^{2}+c^{2}+d^{2}=1$ prove that $a^{2} b^{2} c d++a b^{2} c^{2} d+a b c^{2} d^{2}+a^{2} b c d^{2}+a^{2} b c^{2} d+a b^{2} c d^{2} \leq 3 / 32$,
and determine the cases of equality.
3 Determine, with proof, all integers x for which $x(x+1)(x+7)(x+8)$ is a perfect square.
4 How many sequences $a_{1}, a_{2}, \ldots, a_{2008}$ are there such that each of the numbers $1,2, \ldots, 2008$ occurs once in the sequence, and $i \in\left(a_{1}, a_{2}, \ldots, a_{i}\right)$ for each i such that $2 \leq i \leq 2008$?
$5 \quad$ A triangle $A B C$ has an obtuse angle at B. The perpindicular at B to $A B$ meets $A C$ at D, and $|C D|=|A B|$.
Prove that $|A D|^{2}=|A B| \cdot|B C|$ if and only if $\angle C B D=30^{\circ}$.

- \quad Paper 2

1 Find, with proof, all triples of integers (a, b, c) such that a, b and c are the lengths of the sides of a right angled triangle whose area is $a+b+c$
$2 \quad$ Circles S and T intersect at P and Q, with S passing through the centre of T. Distinct points A and B lie on S, inside T, and are equidistant from the centre of T. The line $P A$ meets T again at D. Prove that $|A D|=|P B|$.

3 Find $a_{3}, a_{4}, \ldots, a_{2008}$, such that $a_{i}= \pm 1$ for $i=3, \ldots, 2008$ and $\sum_{i=3}^{2008} a_{i} 2^{i}=2008$
and show that the numbers $a_{3}, a_{4}, \ldots, a_{2008}$ are uniquely determined by these conditions.

4 Given $k \in[0,1,2,3]$ and a positive integer n, let $f_{k}(n)$ be the number of sequences x_{1}, \ldots, x_{n}, where $x_{i} \in[-1,0,1]$ for $i=1, \ldots, n$, and $x_{1}+\ldots+x_{n} \equiv k \bmod 4$
a) Prove that $f_{1}(n)=f_{3}(n)$ for all positive integers n.
(b) Prove that
$f_{0}(n)=\left[3^{n}+2+[-1]^{n}\right] / 4$
for all positive integers n.
5 Suppose that x, y and z are positive real numbers such that $x y z \geq 1$.
(a) Prove that $27 \leq(1+x+y)^{2}+(1+x+z)^{2}+(1+y+z)^{2}$, with equality if and only if $x=y=z=1$.
(b) Prove that $(1+x+y)^{2}+(1+x+z)^{2}+(1+y+z)^{2} \leq 3(x+y+z)^{2}$, with equality if and only if $x=y=z=1$.

