AoPS Community

China Team Selection Test 2018
www.artofproblemsolving.com/community/c587313
by v_Enhance, DVDthe1st, mofumofu, sqing, smy2012, Photaesthesia

Test 1 Day 1

1 Let p, q be positive reals with sum 1 . Show that for any n-tuple of reals $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, there exists an n-tuple of reals ($x_{1}, x_{2}, \ldots, x_{n}$) satisfying

$$
p \cdot \max \left\{x_{i}, x_{i+1}\right\}+q \cdot \min \left\{x_{i}, x_{i+1}\right\}=y_{i}
$$

for all $i=1,2, \ldots, 2017$, where $x_{2018}=x_{1}$.
2 A number n is interesting if 2018 divides $d(n)$ (the number of positive divisors of n). Determine all positive integers k such that there exists an infinite arithmetic progression with common difference k whose terms are all interesting.

3 Circle ω is tangent to sides $A B, A C$ of triangle $A B C$ at D, E respectively, such that $D \neq B$, $E \neq C$ and $B D+C E<B C . F, G$ lies on $B C$ such that $B F=B D, C G=C E$. Let $D G$ and $E F$ meet at K. L lies on minor arc $D E$ of ω, such that the tangent of L to ω is parallel to $B C$. Prove that the incenter of $\triangle A B C$ lies on $K L$.

Test 1 Day 2

$4 \quad$ Functions $f, g: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfy

$$
f(g(x)+y)=g(f(y)+x)
$$

for any integers x, y. If f is bounded, prove that g is periodic.
5 Given a positive integer k, call n good if among

$$
\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n}
$$

at least $0.99 n$ of them are divisible by k. Show that exists some positive integer N such that among $1,2, \ldots, N$, there are at least $0.99 N$ good numbers.

6 Let $A_{1}, A_{2}, \cdots, A_{m}$ be m subsets of a set of size n. Prove that

$$
\sum_{i=1}^{m} \sum_{j=1}^{m}\left|A_{i}\right| \cdot\left|A_{i} \cap A_{j}\right| \geq \frac{1}{m n}\left(\sum_{i=1}^{m}\left|A_{i}\right|\right)^{3}
$$

Test 2 Day 1

1 Given a triangle $A B C . D$ is a moving point on the edge $B C$. Point E and Point F are on the edge $A B$ and $A C$, respectively, such that $B E=C D$ and $C F=B D$. The circumcircle of $\triangle B D E$ and $\triangle C D F$ intersects at another point P other than D. Prove that there exists a fixed point Q, such that the length of $Q P$ is constant.

2 An integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition.

For example, 4 can be partitioned in five distinct ways:

$$
\begin{aligned}
& 4 \\
& 3+1 \\
& 2+2 \\
& 2+1+1 \\
& 1+1+1+1
\end{aligned}
$$

The number of partitions of \boldsymbol{n} is given by the partition function $p(n)$. So $p(4)=5$.
Determine all the positive integers so that $p(n)+p(n+4)=p(n+2)+p(n+3)$.
3 Two positive integers $p, q \in \mathbf{Z}^{+}$are given. There is a blackboard with n positive integers written on it. A operation is to choose two same number a, a written on the blackboard, and replace them with $a+p, a+q$. Determine the smallest n so that such operation can go on infinitely.

Test 2 Day 2

4 Let k, M be positive integers such that $k-1$ is not squarefree. Prove that there exist a positive real α, such that $\left\lfloor\alpha \cdot k^{n}\right\rfloor$ and M are coprime for any positive integer n.

5 Given positive integers n, k such that $n \geq 4 k$, find the minimal value $\lambda=\lambda(n, k)$ such that for any positive reals $a_{1}, a_{2}, \ldots, a_{n}$, we have

$$
\sum_{i=1}^{n} \frac{a_{i}}{\sqrt{a_{i}^{2}+a_{i+1}^{2}+\cdots+a_{i+k}^{2}}} \leq \lambda
$$

Where $a_{n+i}=a_{i}, i=1,2, \ldots, k$
6 Let M, a, b, r be non-negative integers with $a, r \geq 2$, and suppose there exists a function f : $\mathbb{Z} \rightarrow \mathbb{Z}$ satisfying the following conditions:
(1) For all $n \in \mathbb{Z}, f^{(r)}(n)=a n+b$ where $f^{(r)}$ denotes the composition of r copies of f
(2) For all $n \geq M, f(n) \geq 0$
(3) For all $n>m>M, n-m \mid f(n)-f(m)$

Show that a is a perfect r-th power.

Test3 Day 1

1 Let ω_{1}, ω_{2} be two non-intersecting circles, with circumcenters O_{1}, O_{2} respectively, and radii r_{1}, r_{2} respectively where $r_{1}<r_{2}$. Let $A B, X Y$ be the two internal common tangents of ω_{1}, ω_{2}, where A, X lie on ω_{1}, B, Y lie on ω_{2}. The circle with diameter $A B$ meets ω_{1}, ω_{2} at P and Q respectively. If

$$
\angle A O_{1} P+\angle B O_{2} Q=180^{\circ}
$$

find the value of $\frac{P X}{Q Y}$ (in terms of r_{1}, r_{2}).
2 Let G be a simple graph with 100 vertices such that for each vertice u, there exists a vertice $v \in N(u)$ and $N(u) \cap N(v)=\varnothing$. Try to find the maximal possible number of edges in G. The $N($.$) refers to the neighborhood.$

3 Prove that there exists a constant $C>0$ such that

$$
H\left(a_{1}\right)+H\left(a_{2}\right)+\cdots+H\left(a_{m}\right) \leq C \sqrt{\sum_{i=1}^{m} i a_{i}}
$$

holds for arbitrary positive integer m and any m positive integer $a_{1}, a_{2}, \cdots, a_{m}$, where

$$
H(n)=\sum_{k=1}^{n} \frac{1}{k} .
$$

Test 3 Day 2
4 Suppose $A_{1}, A_{2}, \cdots, A_{n} \subseteq\{1,2, \cdots, 2018\}$ and $\left|A_{i}\right|=2, i=1,2, \cdots, n$, satisfying that

$$
A_{i}+A_{j}, 1 \leq i \leq j \leq n
$$

are distinct from each other. $A+B=\{a+b \mid a \in A, b \in B\}$. Determine the maximal value of n.

5 Let $A B C$ be a triangle with $\angle B A C>90^{\circ}$, and let O be its circumcenter and ω be its circumcircle. The tangent line of ω at A intersects the tangent line of ω at B and C respectively at point P and Q. Let D, E be the feet of the altitudes from P, Q onto $B C$, respectively. F, G are two points on $\overline{P Q}$ different from A, so that A, F, B, E and A, G, C, D are both concyclic. Let M be the midpoint of $\overline{D E}$. Prove that $D F, O M, E G$ are concurrent.

AoPS Community

$6 \quad$ Find all pairs of positive integers (x, y) such that $(x y+1)(x y+x+2)$ be a perfect square .

Test 4 Day 1

1 Define the polymonial sequence $\left\{f_{n}(x)\right\}_{n \geq 1}$ with $f_{1}(x)=1$,

$$
f_{2 n}(x)=x f_{n}(x), f_{2 n+1}(x)=f_{n}(x)+f_{n+1}(x), n \geq 1
$$

Look for all the rational number a which is a root of certain $f_{n}(x)$.
2 There are 32 students in the class with 10 interesting group. Each group contains exactly 16 students. For each couple of students, the square of the number of the groups which are only involved by just one of the two students is defined as their interests - disparity. Define S as the sum of the interests - disparity of all the couples, $\binom{32}{2}(=496)$ ones in total. Determine the minimal possible value of S.

3 In isosceles $\triangle A B C, A B=A C$, points D, E, F lie on segments $B C, A C, A B$ such that $D E \|$ $A B, D F \| A C$. The circumcircle of $\triangle A B C \omega_{1}$ and the circumcircle of $\triangle A E F \omega_{2}$ intersect at A, G. Let $D E$ meet ω_{2} at $K \neq E$. Points L, M lie on ω_{1}, ω_{2} respectively such that $L G \perp$ $K G, M G \perp C G$. Let P, Q be the circumcenters of $\triangle D G L$ and $\triangle D G M$ respectively. Prove that A, G, P, Q are concyclic.

Test 4 Day 2

$4 \quad$ Let p be a prime and k be a positive integer. Set S contains all positive integers a satisfying $1 \leq a \leq p-1$, and there exists positive integer x such that $x^{k} \equiv a(\bmod p)$.
Suppose that $3 \leq|S| \leq p-2$. Prove that the elements of S, when arranged in increasing order, does not form an arithmetic progression.

5 Suppose the real number $\lambda \in(0,1)$, and let n be a positive integer. Prove that the modulus of all the roots of the polynomial

$$
f(x)=\sum_{k=0}^{n}\binom{n}{k} \lambda^{k(n-k)} x^{k}
$$

are 1.
6 Suppose $a_{i}, b_{i}, c_{i}, i=1,2, \cdots, n$, are $3 n$ real numbers in the interval [0,1$]$. Define

$$
S=\left\{(i, j, k) \mid a_{i}+b_{j}+c_{k}<1\right\}, \quad T=\left\{(i, j, k) \mid a_{i}+b_{j}+c_{k}>2\right\} .
$$

Now we know that $|S| \geq 2018,|T| \geq 2018$. Try to find the minimal possible value of n.

