AoPS Community

Macedonia National Olympiad 2015

www.artofproblemsolving.com/community/c58913
by Stefan 4024

Problem 1 Let $A H_{A}, B H_{B}$ and $C H_{C}$ be altitudes in $\triangle A B C$. Let p_{A}, p_{B}, p_{C} be the perpendicular lines from vertices A, B, C to $H_{B} H_{C}, H_{C} H_{A}, H_{A} H_{B}$ respectively. Prove that p_{A}, p_{B}, p_{C} are concurrent lines.

Problem 2 Let $a, b, c \in \mathbb{R}^{+}$such that $a b c=1$. Prove that:

$$
a^{2} b+b^{2} c+c^{2} a \geq \sqrt{(a+b+c)(a b+b c+c a)}
$$

Problem 3 All contestants at one contest are sitting in n columns and are forming a "good" configuration. (We define one configuration as "good" when we don't have 2 friends sitting in the same column). It's impossible for all the students to sit in $n-1$ columns in a "good" configuration. Prove that we can always choose contestants $M_{1}, M_{2}, \ldots, M_{n}$ such that M_{i} is sitting in the $i-t h$ column, for each $i=1,2, \ldots, n$ and M_{i} is friend of M_{i+1} for each $i=1,2, \ldots, n-1$.

Problem 4 Let k_{1} and k_{2} be two circles and let them cut each other at points A and B. A line through B is cutting k_{1} and k_{2} in C and D respectively, such that C doesn't lie inside of k_{2} and D doesn't lie inside of k_{1}. Let M be the intersection point of the tangent lines to k_{1} and k_{2} that are passing through C and D, respectively. Let P be the intersection of the lines $A M$ and $C D$. The tangent line to k_{1} passing through B intersects $A D$ in point L. The tangent line to k_{2} passing through B intersects $A C$ in point K. Let $K P \cap M D \equiv N$ and $L P \cap M C \equiv Q$. Prove that $M N P Q$ is a parallelogram.

Problem 5 Find all natural numbers m having exactly three prime divisors p, q, r, such that

$$
p-1|m ; \quad q r-1| m ; \quad q-1 \nmid m ; \quad r-1 \nmid m ; \quad 3 \nmid q+r .
$$

