AoPS Community

2015 Iran Geometry Olympiad

Iran Geometry Olympiad 2015

www.artofproblemsolving.com/community/c593235
by Snakes, parmenides51, MRF2017, pedestrilo14, acupofmath, mofumofu

- Elementary

1 We have four wooden triangles with sides $3,4,5$ centimeters. How many convex polygons can we make by all of these triangles? (Just draw the polygons without any proof)

A convex polygon is a polygon which all of it's angles are less than 180° and there isn't any hole in it. For example:
https://1.bp.blogspot.com/-JgvF_B-uRag/W1R4f4AXxTI/AAAAAAAAIzc/Fo3qu3pxXcoElk01RTYJYZNwj s640/igo\%2B2015.el1.png

2 Let $A B C$ be a triangle with $\angle A=60^{\circ}$. The points M, N, K lie on $B C, A C, A B$ respectively such that $B K=K M=M N=N C$. If $A N=2 A K$, find the values of $\angle B$ and $\angle C$.
by Mahdi Etesami Fard
3 In the figure below, we know that $A B=C D$ and $B C=2 A D$. Prove that $\angle B A D=30^{\circ}$. https://3.bp.blogspot.com/-IXi_8jSwzlU/W1R5IydV5uI/AAAAAAAAIzo/2sREnDEnLH8R9zmAZLCkVCGeM s400/IGO\%2B2015.el3.png

4 In rectangle $A B C D$, the points M, N, P, Q lie on $A B, B C, C D, D A$ respectively such that the area of triangles $A Q M, B M N, C N P, D P Q$ are equal. Prove that the quadrilateral $M N P Q$ is parallelogram.
by Mahdi Etesami Fard
5 Do there exist 6 circles in the plane such that every circle passes through centers of exactly 3 other circles?
by Morteza Saghafian

- Medium

1 Given a circle and Points P, B, A on it.Point Q is Interior of this circle such that:

1) $\angle P A Q=90$.
2) $P Q=B Q$.

Prove that $\angle A Q B-\angle P Q A=\widehat{A B}$.
proposed by Davoud Vakili, Iran.

2 In acute-angled triangle $A B C, B H$ is the altitude of the vertex B. The points D and E are midpoints of $A B$ and $A C$ respectively. Suppose that F be the reflection of H with respect to $E D$. Prove that the line $B F$ passes through circumcenter of $A B C$.
by Davood Vakili
3 In triangle $A B C, M, N, K$ are midpoints of sides $B C, A C, A B$, respectively. Construct two semicircles with diameter $A B, A C$ outside of triangle $A B C . M K, M N$ intersect with semicircles in X, Y.The tangents to semicircles at X, Y intersect at point Z. Prove that $A Z \perp B C$.(Mehdi E'tesami Fard)

4 Same as Advanced P2

5 a) Do there exist 5 circles in the plane such that every circle passes through centers of exactly 3 circles?
b) Do there exist 6 circles in the plane such that every circle passes through centers of exactly 3 circles?

- Advanced

1 let w_{1} and w_{2} two circles such that $w_{1} \cap w_{2}=\{A, B\}$
let X a point on w_{2} and Y on w_{1} such that $B Y \perp B X$
suppose that O is the center of w_{1} and $X^{\prime}=w_{2} \cap O X$
now if $K=w_{2} \cap X^{\prime} Y$ prove X is the midpoint of arc $A K$
2 let $A B C$ an equilateral triangle with circum circle w
let P a point on arc $B C$ (point A is on the other side)
pass a tangent line d through point P such that $P \cap A B=F$ and $A C \cap d=L$
let O the center of the circle w
prove that $\angle L O F>90^{\circ}$
3 let H the orthocenter of the triangle $A B C$
pass two lines l_{1} and l_{2} through H such that $l_{1} \perp l_{2}$
we have $l_{1} \cap B C=D$ and $l_{1} \cap A B=Z$
also $l_{2} \cap B C=E$ and $l_{2} \cap A C=X$ like this picture
pass a line d_{1} through D parallel to $A C$ and another line d_{2} through E parallel to $A B$
let $d_{1} \cap d_{2}=Y$
prove X, Y and Z are on a same line
4 In triangle $A B C$, we draw the circle with center A and radius $A B$. This circle intersects $A C$ at two points. Also we draw the circle with center A and radius $A C$ and this circle intersects $A B$ at two points. Denote these four points by $A_{1}, A_{2}, A_{3}, A_{4}$. Find the points $B_{1}, B_{2}, B_{3}, B_{4}$ and $C_{1}, C_{2}, C_{3}, C_{4}$ similarly. Suppose that these 12 points lie on two circles. Prove that the triangle $A B C$ is isosceles.

5 we have a triangle $A B C$ and make rectangles $A B A_{1} B_{2}, B C B_{1} C_{2}$ and $C A C_{1} A_{2}$ out of it. then pass a line through A_{2} perpendicular to $C_{1} A_{2}$ and pass another line through A_{1} perpendicular to $A_{1} B_{2}$.
let A^{\prime} the common point of this two lines.
like this we make B^{\prime} and C^{\prime}.
prove $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ intersect each other in a same point.

