AoPS Community

Greece Team Selection Test 2015

www.artofproblemsolving.com/community/c60122
by john111111

1 Solve in positive integers the following equation; $x y(x+y-10)-3 x^{2}-2 y^{2}+21 x+16 y=60$
2 Consider 111 distinct points which lie on or in the internal of a circle with radius 1.Prove that there are at least 1998 segments formed by these points with length $\leq \sqrt{3}$

3 Let $A B C$ be an acute triangle with $A B<A C<B C$ inscribed in circle $c(O, R)$. The excircle $\left(c_{A}\right)$ has center I and touches the sides $B C, A C, A B$ of the triangle $A B C$ at D, E, Z respectively. $A I$ cuts (c) at point M and the circumcircle $\left(c_{1}\right)$ of triangle $A Z E$ cuts (c) at K. The circumcircle $\left(c_{2}\right)$ of the triangle $O K M$ cuts $\left(c_{1}\right)$ at point N.Prove that the point of intersection of the lines $A N, K I$ lies on (c).
$4 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfy $y f(x)+f(y) \geq f(x y)$

