AoPS Community

www.artofproblemsolving.com/community/c602484
by laegolas, PlatinumFalcon, Headhunter, Scientist, basemfouda2002, Spotsjoy

- \quad Paper 1

1 Hamilton Avenue has eight houses. On one side of the street are the houses numbered $1,3,5,7$ and directly opposite are houses $2,4,6,8$ respectively. An eccentric postman starts deliveries at house 1 and delivers letters to each of the houses, finally returning to house 1 for a cup of tea. Throughout the entire journey he must observe the following rules. The numbers of the houses delivered to must follow an odd-even-odd-even pattern throughout, each house except house 1 is visited exactly once (house 1 is visited twice) and the postman at no time is allowed to cross the road to the house directly opposite. How many different delivery sequences are possible?

2 Let $A B C D$ be a square. The line segment $A B$ is divided internally at H so that $|A B| \cdot|B H|=$ $|A H|^{2}$. Let E be the midpoints of $A D$ and X be the midpoint of $A H$. Let Y be a point on $E B$ such that $X Y$ is perpendicular to $B E$. Prove that $|X Y|=|X H|$.
$3 \quad$ Find all positive integers n for which $n^{8}+n+1$ is a prime number.
4 Given an n-tuple of numbers $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where each $x_{i}=+1$ or -1 , form a new n-tuple

$$
\left(x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, \ldots, x_{n} x_{1}\right),
$$

and continue to repeat this operation. Show that if $n=2^{k}$ for some integer $k \geq 1$, then after a certain number of repetitions of the operation, we obtain the n-tuple

$$
(1,1,1, \ldots, 1)
$$

5 Hello.
Suppose a, b, c are real numbers such that $a+b+c=0$ and $a^{2}+b^{2}+c^{2}=1$.
Prove that $a^{2} b^{2} c^{2} \leq \frac{1}{54}$ and determine the cases of equality.

- \quad Paper 2

1 Let $P(x)$ be a polynomial with rational coefficients. Prove that there exists a positive integer n such that the polynomial $Q(x)$ defined by

$$
Q(x)=P(x+n)-P(x)
$$

has integer coefficients.
2 For any positive integer n define

$$
E(n)=n(n+1)(2 n+1)(3 n+1) \cdots(10 n+1) .
$$

Find the greatest common divisor of $E(1), E(2), E(3), \ldots, E(2009)$.
3 Find all pairs (a, b) of positive integers such that $(a b)^{2}-4(a+b)$ is the square of an integer.
$4 \quad$ At a strange party, each person knew exactly 22 others.
For any pair of people X and Y who knew each other, there was no other person at the party that they both knew.
For any pair of people X and Y who did not know one another, there were exactly 6 other people that they both knew.
How many people were at the party?
5 In the triangle $A B C$ we have $|A B|<|A C|$. The bisectors of the angles at B and C meet $A C$ and $A B$ at D and E respectively. $B D$ and $C E$ intersect at the incenter I of $\triangle A B C$.
Prove that $\angle B A C=60^{\circ}$ if and only if $|I E|=|I D|$

