

# 2017 Sharygin Geometry Olympiad

#### Sharygin Geometry Olympiad 2017

www.artofproblemsolving.com/community/c609664

by CinarArslan, anantmudgal09, MNZ2000, WizardMath, dcouchman, tarzanjunior, parmenides51

|   | Grade 8                                                                                                                                                                                                                                                                                                                                                       |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Day 1                                                                                                                                                                                                                                                                                                                                                         |
| 1 | Let $ABCD$ be a cyclic quadrilateral with $AB = BC$ and $AD = CD$ . A point $M$ lies on the minor arc $CD$ of its circumcircle. The lines $BM$ and $CD$ meet at point $P$ , the lines $AM$ and $BD$ meet at point $Q$ . Prove that $PQ \parallel AC$ .                                                                                                        |
| 2 | Let <i>H</i> and <i>O</i> be the orthocenter and circumcenter of an acute-angled triangle <i>ABC</i> , respectively. The perpendicular bisector of <i>BH</i> meets <i>AB</i> and <i>BC</i> at points $A_1$ and $C_1$ , respectively. Prove that <i>OB</i> bisects the angle $A_1OC_1$ .                                                                       |
| 3 | Let $AD$ , $BE$ and $CF$ be the medians of triangle $ABC$ . The points $X$ and $Y$ are the reflections of $F$ about $AD$ and $BE$ , respectively. Prove that the circumcircles of triangles $BEX$ and $ADY$ are concentric.                                                                                                                                   |
| 4 | Alex dissects a paper triangle into two triangles. Each minute after this he dissects one of obtained triangles into two triangles. After some time (at least one hour) it appeared that all obtained triangles were congruent. Find all initial triangles for which this is possible.                                                                        |
|   | Day 2                                                                                                                                                                                                                                                                                                                                                         |
| 5 | A square $ABCD$ is given. Two circles are inscribed into angles $A$ and $B$ , and the sum of their diameters is equal to the sidelength of the square. Prove that one of their common tangents passes through the midpoint of $AB$ .                                                                                                                          |
| 6 | A median of an acute-angled triangle dissects it into two triangles. Prove that each of them can be covered by a semidisc congruent to a half of the circumdisc of the initial triangle.                                                                                                                                                                      |
| 7 | Let $A_1A_2A_{13}$ and $B_1B_2B_{13}$ be two regular 13-gons in the plane such that the points $B_1$ and $A_{13}$ coincide and lie on the segment $A_1B_{13}$ , and both polygons lie in the same semiplane with respect to this segment. Prove that the lines $A_1A_9, B_{13}B_8$ and $A_8B_9$ are concurrent.                                               |
| 8 | Let $ABCD$ be a square, and let $P$ be a point on the minor arc $CD$ of its circumcircle. The lines $PA$ , $PB$ meet the diagonals $BD$ , $AC$ at points $K$ , $L$ respectively. The points $M$ , $N$ are the projections of $K$ , $L$ respectively to $CD$ , and $Q$ is the common point of lines $KN$ and $ML$ . Prove that $PQ$ bisects the segment $AB$ . |

|   | Grade 9                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Day 1                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 | Let $ABC$ be a regular triangle. The line passing through the midpoint of $AB$ and parallel to $AC$ meets the minor arc $AB$ of the circumcircle at point $K$ . Prove that the ratio $AK : BK$ is equal to the ratio of the side and the diagonal of a regular pentagon.                                                                                                                                                         |
| 2 | Let <i>I</i> be the incenter of a triangle <i>ABC</i> , <i>M</i> be the midpoint of <i>AC</i> , and <i>W</i> be the midpoint of arc <i>AB</i> of the circumcircle not containing <i>C</i> . It is known that $\angle AIM = 90^{\circ}$ . Find the ratio $CI : IW$ .                                                                                                                                                              |
| 3 | The angles <i>B</i> and <i>C</i> of an acute-angled triangle <i>ABC</i> are greater than 60°. Points <i>P</i> , <i>Q</i> are chosen on the sides <i>AB</i> , <i>AC</i> respectively so that the points <i>A</i> , <i>P</i> , <i>Q</i> are concyclic with the orthocenter <i>H</i> of the triangle <i>ABC</i> . Point <i>K</i> is the midpoint of <i>PQ</i> . Prove that $\angle BKC > 90^\circ$ . <i>Proposed by A. Mudgal</i>   |
| 4 | Points $M$ and $K$ are chosen on lateral sides $AB$ , $AC$ of an isosceles triangle $ABC$ and point $D$ is chosen on $BC$ such that $AMDK$ is a parallelogram. Let the lines $MK$ and $BC$ meet at point $L$ , and let $X, Y$ be the intersection points of $AB$ , $AC$ with the perpendicular line from $D$ to $BC$ . Prove that the circle with center $L$ and radius $LD$ and the circumcircle of triangle $AXY$ are tangent. |
| - | Day 2                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5 | Let $BH_b, CH_c$ be altitudes of an acute-angled triangle $ABC$ . The line $H_bH_c$ meets the circum-<br>circle of $ABC$ at points $X$ and $Y$ . Points $P, Q$ are the reflections of $X, Y$ about $AB, AC$ respec-<br>tively. Prove that $PQ \parallel BC$ .                                                                                                                                                                    |
|   | Proposed by Pavel Kozhevnikov                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6 | Let $ABC$ be a right-angled triangle ( $\angle C = 90^{\circ}$ ) and $D$ be the midpoint of an altitude from C.<br>The reflections of the line $AB$ about $AD$ and $BD$ , respectively, meet at point $F$ . Find the ratio $S_{ABF} : S_{ABC}$ .<br>Note: $S_{\alpha}$ means the area of $\alpha$ .                                                                                                                              |
| 7 | Let $a$ and $b$ be parallel lines with 50 distinct points marked on $a$ and 50 distinct points marked on $b$ . Find the greatest possible number of acute-angled triangles all of whose vertices are marked.                                                                                                                                                                                                                     |
| 8 | Let $AK$ and $BL$ be the altitudes of an acute-angled triangle $ABC$ , and let $\omega$ be the excircle of $ABC$ touching side $AB$ . The common internal tangents to circles $CKL$ and $\omega$ meet $AB$ at points $P$ and $Q$ . Prove that $AP = BQ$ .                                                                                                                                                                        |

# 2017 Sharygin Geometry Olympiad

Proposed by I.Frolov

|    | Grade 10                                                                                                                                                                                                                                                                            |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Day 1                                                                                                                                                                                                                                                                               |
| 1  | If two circles intersect at $A, B$ and common tangents of them intesrsect circles at $C, D$ if $O_a$ is circumcentre of $ACD$ and $O_b$ is circumcentre of $BCD$ prove $AB$ intersects $O_aO_b$ at its midpoint                                                                     |
| 2  | If $ABC$ is acute triangle, prove distance from each vertex to corresponding excentre is less than sum of two greatest side of triangle                                                                                                                                             |
| 3  | ABCD is convex quadrilateral. If $W_a$ is product of power of A about circle BCD and area of triangle BCD. And define $W_b, W_c, W_d$ similarly prove $W_a + W_b + W_c + W_d = 0$                                                                                                   |
| 4  | Given triangle $ABC$ and its incircle $\omega$ prove you can use just a ruler and drawing at most 8 lines to construct points $A', B', C'$ on $\omega$ such that $A, B', C'$ and $B, C', A'$ and $C, A', B'$ are collinear.                                                         |
|    | Day 2                                                                                                                                                                                                                                                                               |
| 5  | 10.5 Let $BB'$ , $CC'$ be the altitudes of an acute triangle $ABC$ . Two circles through A and C' are tangent to $BC$ at points P and Q. Prove that $A, B', P, Q$ are concyclic.                                                                                                    |
| 6  | 10.6 Let the insphere of a pyramid $SABC$ touch the faces $SAB, SBC, SCA$ at $D, E, F$ respectively. Find all the possible values of the sum of the angles $SDA, SEB, SFC$ .                                                                                                        |
| 7  | 10.7 A quadrilateral $ABCD$ is circumscribed around the circle $\omega$ centered at $I$ and inscribed into the circle $\Gamma$ . The lines $AB, CD$ meet at point $P$ , and the lines $BC, AD$ meet at point $Q$ . Prove that the circles $\odot(PIQ)$ and $\Gamma$ are orthogonal. |
| 8  | 10.8 Suppose $S$ is a set of points in the plane, $ S $ is even; no three points of $S$ are collinear.<br>Prove that $S$ can be partitioned into two sets $S_1$ and $S_2$ so that their convex hulls have equal number of vertices.                                                 |
| -  | First Round                                                                                                                                                                                                                                                                         |
| -  | Grade 8                                                                                                                                                                                                                                                                             |
| Р1 | Mark on a cellular paper four nodes forming a convex quadrilateral with the sidelengths equal to four different primes.<br>( <i>Proposed by A.Zaslavsky</i> )                                                                                                                       |
|    |                                                                                                                                                                                                                                                                                     |

## 2017 Sharygin Geometry Olympiad

- **P2** A circle cuts off four right-angled triangles from rectangle ABCD. Let  $A_0, B_0, C_0$  and  $D_0$  be the midpoints of the correspondent hypotenuses. Prove that  $A_0C_0 = B_0D_0$ Proosed by L.Shteingarts **P3** Let I be the incenter of triangle ABC;  $H_B, H_C$  the orthocenters of triangles ACI and ABI respectively; K the touching point of the incircle with the side BC. Prove that  $H_B, H_C$  and K are collinear. Proposed by M.Plotnikov A triangle ABC is given. Let C' be the vertex of an isosceles triangle ABC' with  $\angle C' = 120^{\circ}$ **P4** constructed on the other side of AB than  $C_{i}$  and B' be the vertex of an equilateral triangle ACB' constructed on the same side of AC as ABC. Let K be the midpoint of BB' Find the angles of triangle KCC'. Proposed by A.Zaslavsky Grades 89 **P5** A segment AB is fixed on the plane. Consider all acute-angled triangles with side AB. Find the locus of ) the vertices of their greatest angles, b) their incenters. **P6** Let ABCD be a convex quadrilateral with AC = BD = AD; E and F the midpoints of AB and CD respectively; O the common point of the diagonals. Prove that EF passes through the touching points of the incircle of triangle AOD with AO and OD Proposed by N.Moskvitin **P7** The circumcenter of a triangle lies on its incircle. Prove that the ratio of its greatest and smallest sides is less than two. Proposed by B.Frenkin **P8** Let AD be the base of trapezoid ABCD. It is known that the circumcenter of triangle ABC lies on *BD*. Prove that the circumcenter of triangle *ABD* lies on *AC*. Proposed by Ye.Bakayev Let  $C_0$  be the midpoint of hypotenuse AB of triangle ABC;  $AA_1, BB_1$  the bisectors of this **P9** 
  - **P9** Let  $C_0$  be the midpoint of hypotenuse AB of triangle ABC;  $AA_1$ ,  $BB_1$  the bisectors of this triangle; I its incenter. Prove that the lines  $C_0I$  and  $A_1B_1$  meet on the altitude from C. *Proposed by A.Zaslavsky*
  - Grades 810

**P10** Points *K* and *L* on the sides *AB* and *BC* of parallelogram *ABCD* are such that  $\angle AKD = \angle CLD$ . Prove that the circumcenter of triangle *BKL* is equidistant from *A* and *C*.

Proposed by I.I.Bogdanov

| -   | Grades 811                                                                                                                                                                                                                                                                                                                                                             |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P11 | A finite number of points is marked on the plane. Each three of them are not collinear. A circle is circumscribed around each triangle with marked vertices. Is it possible that all centers of these circles are also marked?<br><i>Proposed by A.Tolesnikov</i>                                                                                                      |
| _   | Grades 910                                                                                                                                                                                                                                                                                                                                                             |
| P12 | Let $AA_1, CC_1$ be the altitudes of triangle $ABC, B_0$ the common point of the altitude from $B$ and<br>the circumcircle of $ABC$ ; and $Q$ the common point of the circumcircles of $ABC$ and $A_1C_1B_0$ ,<br>distinct from $B_0$ . Prove that $BQ$ is the symmedian of $ABC$ .<br><i>Proposed by D.Shvetsov</i>                                                   |
| -   | Grades 911                                                                                                                                                                                                                                                                                                                                                             |
| P13 | Two circles pass through points <i>A</i> and <i>B</i> . A third circle touches both these circles and meets <i>AB</i> at points <i>C</i> and <i>D</i> . Prove that the tangents to this circle at these points are parallel to the common tangents of two given circles. <i>Proposed by A.Zaslavsky</i>                                                                |
| P14 | Let points <i>B</i> and <i>C</i> lie on the circle with diameter <i>AD</i> and center <i>O</i> on the same side of <i>AD</i> .<br>The circumcircles of triangles <i>ABO</i> and <i>CDO</i> meet <i>BC</i> at points <i>F</i> and <i>E</i> respectively. Prove that $R^2 = AF.DE$ , where <i>R</i> is the radius of the given circle.<br><i>Proposed by N.Moskvitin</i> |
| P15 | Let $ABC$ be an acute-angled triangle with incircle $\omega$ and incenter $I$ . Let $\omega$ touch $AB$ , $BC$ and $CA$ at points $D, E, F$ respectively. The circles $\omega_1$ and $\omega_2$ centered at $J_1$ and $J_2$ respectively are inscribed into $ADIF$ and $BDIE$ . Let $J_1J_2$ intersect $AB$ at point $M$ . Prove that $CD$ is perpendicular to $IM$ .  |
| P16 | The tangents to the circumcircle of triangle $ABC$ at $A$ and $B$ meet at point $D$ . The circle passing through the projections of $D$ to $BC, CA, AB$ , meet $AB$ for the second time at point $C'$ . Points $A', B'$ are defined similarly. Prove that $AA', BB', CC'$ concur.                                                                                      |
| P17 | Using a compass and a ruler, construct a point K inside an acute-angled triangle ABC so that $\angle KBA = 2 \angle KAB$ and $\angle KBC = 2 \angle KCB$ .                                                                                                                                                                                                             |
| P18 | Let <i>L</i> be the common point of the symmedians of triangle <i>ABC</i> , and <i>BH</i> be its altitude. It is known that $\angle ALH = 180^{\circ} - 2\angle A$ . Prove that $\angle CLH = 180^{\circ} - 2\angle C$ .                                                                                                                                               |
| _   | Grades 1011                                                                                                                                                                                                                                                                                                                                                            |

## 2017 Sharygin Geometry Olympiad

- **P19** Let cevians AA', BB' and CC' of triangle ABC concur at point P. The circumcircle of triangle PA'B' meets AC and BC at points M and N respectively, and the circumcircles of triangles PC'B' and PA'C' meet AC and BC for the second time respectively at points K and L. The line c passes through the midpoints of segments MN and KL. The lines a and b are defined similarly. Prove that a, b and c concur.
- **P20** Given a right-angled triangle ABC and two perpendicular lines x and y passing through the vertex A of its right angle. For an arbitrary point X on x define  $y_B$  and  $y_C$  as the reflections of y about XB and XC respectively. Let Y be the common point of  $y_b$  and  $y_c$ . Find the locus of Y (when  $y_b$  and  $y_c$  do not coincide).
- **P21** A convex hexagon is circumscribed about a circle of radius 1. Consider the three segments joining the midpoints of its opposite sides. Find the greatest real number *r* such that the length of at least one segment is at least *r*.
- **P22** Let *P* be an arbitrary point on the diagonal *AC* of cyclic quadrilateral *ABCD*, and *PK*, *PL*, *PM*, *PN*, *PO* be the perpendiculars from *P* to *AB*, *BC*, *CD*, *DA*, *BD* respectively. Prove that the distance from *P* to *KN* is equal to the distance from *O* to *ML*.
- **P23** Let a line m touch the incircle of triangle ABC. The lines passing through the incenter I and perpendicular to AI, BI, CI meet m at points A', B', C' respectively. Prove that AA', BB' and CC' concur.
- Grade 11
- **P24** Two tetrahedrons are given. Each two faces of the same tetrahedron are not similar, but each face of the first tetrahedron is similar to some face of the second one. Does this yield that these tetrahedrons are similar?

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.