AoPS Community

Japan MO Finals 2018

www.artofproblemsolving.com/community/c611633
by mofumofu

1 Positive integers between 1 to 100 inclusive are written on a blackboard, each exactly once. One operation involves choosing two numbers a and b on the blackboard and erasing them, then writing the greatest common divisor of $a^{2}+b^{2}+2$ and $a^{2} b^{2}+3$. After a number of operations, there is only one positive integer left on the blackboard. Prove this number cannot be a perfect square.

2 Given a scalene triangle $\triangle A B C, D, E$ lie on segments $A B, A C$ respectively such that $C A=$ $C D, B A=B E$. Let ω be the circumcircle of $\triangle A D E$. P is the reflection of A across $B C$, and $P D, P E$ meets ω again at X, Y respectively. Prove that $B X$ and $C Y$ intersect on ω.

3 Let $S=\{1,2, \ldots, 999\}$. Consider a function $f: S \rightarrow S$, such that for any $n \in S$,

$$
f^{n+f(n)+1}(n)=f^{n f(n)}(n)=n
$$

Prove that there exists $a \in S$, such that $f(a)=a$. Here $f^{k}(n)=\underbrace{f(f(\ldots f}_{k}(n) \ldots))$.
4 Let n be an odd positive integer, and consider an infinite square grid. Prove that it is impossible to fill in one of 1,2 or 3 in every cell, which simultaneously satisfies the following conditions:
(1) Any two cells which share a common side does not have the same number filled in them.
(2) For any 1×3 or 3×1 subgrid, the numbers filled does not contain $1,2,3$ in that order be it reading from top to bottom, bottom to top, or left to right, or right to left.
(3) The sum of numbers of any $n \times n$ subgrid is the same.
$5 \quad$ Let T be a positive integer. Find all functions $f: \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$, such that there exists integers $C_{0}, C_{1}, \ldots, C_{T}$ satisfying:
(1) For any positive integer n, the number of positive integer pairs (k, l) such that $f(k, l)=n$ is exactly n.
(2) For any $t=0,1, \ldots, T$, as well as for any positive integer pair (k, l), the equality $f(k+t, l+$ $T-t)-f(k, l)=C_{t}$ holds.

