AoPS Community

USAJMO 2018

www.artofproblemsolving.com/community/c615274
by green_dog_7983, Th3Numb3rThr33, hwI0304, CantonMathGuy, rrusczyk

- Day 1 April 18th

1 For each positive integer n, find the number of n-digit positive integers that satisfy both of the following conditions:

- no two consecutive digits are equal, and - the last digit is a prime.

2 Let a, b, c be positive real numbers such that $a+b+c=4 \sqrt[3]{a b c}$. Prove that

$$
2(a b+b c+c a)+4 \min \left(a^{2}, b^{2}, c^{2}\right) \geq a^{2}+b^{2}+c^{2}
$$

3 Let $A B C D$ be a quadrilateral inscribed in circle ω with $\overline{A C} \perp \overline{B D}$. Let E and F be the reflections of D over lines $B A$ and $B C$, respectively, and let P be the intersection of lines $B D$ and $E F$. Suppose that the circumcircle of $\triangle E P D$ meets ω at D and Q, and the circumcircle of $\triangle F P D$ meets ω at D and R. Show that $E Q=F R$.

- Day 2 April 19th

4 Triangle $A B C$ is inscribed in a circle of radius 2 with $\angle A B C \geq 90^{\circ}$, and x is a real number satisfying the equation $x^{4}+a x^{3}+b x^{2}+c x+1=0$, where $a=B C, b=C A, c=A B$. Find all possible values of x.

5 Let p be a prime, and let a_{1}, \ldots, a_{p} be integers. Show that there exists an integer k such that the numbers

$$
a_{1}+k, a_{2}+2 k, \ldots, a_{p}+p k
$$

produce at least $\frac{1}{2} p$ distinct remainders upon division by p.
Proposed by Ankan Bhattacharya
6 Karl starts with n cards labeled $1,2,3, \ldots, n$ lined up in a random order on his desk. He calls a pair (a, b) of these cards swapped if $a>b$ and the card labeled a is to the left of the card labeled b. For instance, in the sequence of cards $3,1,4,2$, there are three swapped pairs of cards, $(3,1)$, $(3,2)$, and $(4,2)$.

He picks up the card labeled 1 and inserts it back into the sequence in the opposite position: if the card labeled 1 had i card to its left, then it now has i cards to its right. He then picks up
the card labeled 2 and reinserts it in the same manner, and so on until he has picked up and put back each of the cards $1,2, \ldots, n$ exactly once in that order. (For example, the process starting at $3,1,4,2$ would be $3,1,4,2 \rightarrow 3,4,1,2 \rightarrow 2,3,4,1 \rightarrow 2,4,3,1 \rightarrow 2,3,4,1$.)

Show that, no matter what lineup of cards Karl started with, his final lineup has the same number of swapped pairs as the starting lineup.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

