

AoPS Community

2018 Romanian Masters in Mathematics

10th RMM 2018

www.artofproblemsolving.com/community/c618724 by Snakes, falantrng, rmtf1111, 404error

- Day 1
- 1 Let *ABCD* be a cyclic quadrilateral an let *P* be a point on the side *AB*. The diagonals *AC* meets the segments *DP* at *Q*. The line through *P* parallel to *CD* mmets the extension of the side *CB* beyond *B* at *K*. The line through *Q* parallel to *BD* meets the extension of the side *CB* beyond *B* at *L*. Prove that the circumcircles of the triangles *BKP* and *CLQ* are tangent.
- **2** Determine whether there exist non-constant polynomials P(x) and Q(x) with real coefficients satisfying

 $P(x)^{10} + P(x)^9 = Q(x)^{21} + Q(x)^{20}.$

- **3** Ann and Bob play a game on the edges of an infinite square grid, playing in turns. Ann plays the first move. A move consists of orienting any edge that has not yet been given an orientation. Bob wins if at any point a cycle has been created. Does Bob have a winning strategy?
- Day 2
- **4** Let a, b, c, d be positive integers such that $ad \neq bc$ and gcd(a, b, c, d) = 1. Let S be the set of values attained by gcd(an + b, cn + d) as n runs through the positive integers. Show that S is the set of all positive divisors of some positive integer.
- **5** Let *n* be positive integer and fix 2n distinct points on a circle. Determine the number of ways to connect the points with *n* arrows (oriented line segments) such that all of the following conditions hold: -each of the 2n points is a startpoint or endpoint of an arrow; -no two arrows intersect; and -there are no two arrows \overrightarrow{AB} and \overrightarrow{CD} such that *A*, *B*, *C* and *D* appear in clockwise order around the circle (not necessarily consecutively).
- **6** Fix a circle Γ , a line ℓ to tangent Γ , and another circle Ω disjoint from ℓ such that Γ and Ω lie on opposite sides of ℓ . The tangents to Γ from a variable point X on Ω meet ℓ at Y and Z. Prove that, as X varies over Ω , the circumcircle of XYZ is tangent to two fixed circles.

Art of Problem Solving is an ACS WASC Accredited School.