Art of Problem Solving

AoPS Community

10th RMM 2018

www.artofproblemsolving.com/community/c618724
by Snakes, falantrng, rmtf1111, 404error

- Day 1

1 Let $A B C D$ be a cyclic quadrilateral an let P be a point on the side $A B$. The diagonals $A C$ meets the segments $D P$ at Q. The line through P parallel to $C D$ mmets the extension of the side $C B$ beyond B at K. The line through Q parallel to $B D$ meets the extension of the side $C B$ beyond B at L. Prove that the circumcircles of the triangles $B K P$ and $C L Q$ are tangent .

2 Determine whether there exist non-constant polynomials $P(x)$ and $Q(x)$ with real coefficients satisfying

$$
P(x)^{10}+P(x)^{9}=Q(x)^{21}+Q(x)^{20} .
$$

3 Ann and Bob play a game on the edges of an infinite square grid, playing in turns. Ann plays the first move. A move consists of orienting any edge that has not yet been given an orientation. Bob wins if at any point a cycle has been created. Does Bob have a winning strategy?

- Day 2

4 Let a, b, c, d be positive integers such that $a d \neq b c$ and $\operatorname{gcd}(a, b, c, d)=1$. Let S be the set of values attained by $\operatorname{gcd}(a n+b, c n+d)$ as n runs through the positive integers. Show that S is the set of all positive divisors of some positive integer.
$5 \quad$ Let n be positive integer and fix $2 n$ distinct points on a circle. Determine the number of ways to connect the points with n arrows (oriented line segments) such that all of the following conditions hold: -each of the $2 n$ points is a startpoint or endpoint of an arrow; -no two arrows intersect; and -there are no two arrows $\overrightarrow{A B}$ and $\overrightarrow{C D}$ such that A, B, C and D appear in clockwise order around the circle (not necessarily consecutively).
$6 \quad$ Fix a circle Γ, a line ℓ to tangent Γ, and another circle Ω disjoint from ℓ such that Γ and Ω lie on opposite sides of ℓ. The tangents to Γ from a variable point X on Ω meet ℓ at Y and Z. Prove that, as X varies over Ω, the circumcircle of $X Y Z$ is tangent to two fixed circles.

