AoPS Community

Greece National Olympiad 2018

www.artofproblemsolving.com/community/c625847
by Borbas

1 Let $\left(x_{n}\right), n \in \mathbb{N}$ be a sequence such that $x_{n+1}=3 x_{n}^{3}+x_{n}, \forall n \in \mathbb{N}$ and $x_{1}=\frac{a}{b}$ where a, b are positive integers such that $3 \chi b$. If x_{m} is a square of a rational number for some positive integer m, prove that x_{1} is also a square of a rational number.

2 Let $A B C$ be an acute-angled triangle with $A B<A C<B C$ and $c(O, R)$ the circumscribed circle. Let D, E be points in the small arcs $A C, A B$ respectively. Let K be the intersection point of $B D, C E$ and N the second common point of the circumscribed circles of the triangles $B K E$ and $C K D$. Prove that A, K, N are collinear if and only if K belongs to the symmedian of $A B C$ passing from A.

3 Let n, m be positive integers such that $n<m$ and $a_{1}, a_{2}, \ldots, a_{m}$ be different real numbers.
(a) Find all polynomials P with real coefficients and degree at most n such that: $\mid P\left(a_{i}\right)-$ $P\left(a_{j}\right)\left|=\left|a_{i}-a_{j}\right|\right.$ for all $i, j=\{1,2, \ldots, m\}$ such that $i<j$.
(b) If $n, m \geq 2$ does there exist a polynomial Q with real coefficients and degree n such that: $\left|Q\left(a_{i}\right)-Q\left(a_{j}\right)\right|<\left|a_{i}-a_{j}\right|$ for all $i, j=\{1,2, \ldots, m\}$ such that $i<j$
Edit: See\#3
4 In the plane, there are n points ($n \geq 4$) where no 3 of them are collinear. Let $A(n)$ be the number of parallelograms whose vertices are those points with area 1. Prove the following inequality: $A(n) \leq \frac{n^{2}-3 n}{4}$ for all $n \geq 4$

