Art of Problem Solving

AoPS Community

1997 Korea National Olympiad

Korea National Olympiad 1997

www.artofproblemsolving.com/community/c629183
by PARISsaintGERMAIN

- Day 1

1 Let $f(n)$ be the number of ways to express positive integer n as a sum of positive odd integers. Compute $f(n)$.
(If the order of odd numbers are different, then it is considered as different expression.)
2 For positive integer n, let $a_{n}=\sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{n-2}{k}\left(-\frac{1}{4}\right)^{k}$.

3 Let $A B C D E F$ be a convex hexagon such that $A B=B C, C D=D E, E F=F A$.
Prove that $\frac{B C}{B E}+\frac{D E}{D A}+\frac{F A}{F C} \geq \frac{3}{2}$ and find when equality holds.
4 For any prime number $p>2$, and an integer a and b, if $1+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\cdots+\frac{1}{(p-1)^{3}}=\frac{a}{b}$, prove that a is divisible by p.

- Day 2

5 Let a, b, c be the side lengths of any triangle $\triangle A B C$ opposite to A, B and C, respectively. Let x, y, z be the length of medians from A, B and C, respectively.
If T is the area of $\triangle A B C$, prove that $\frac{a^{2}}{x}+\frac{b^{2}}{y}+\frac{c^{2}}{z} \geq \sqrt{\sqrt{3} T}$
6 Find all polynomial $P(x, y)$ for any reals x, y such that
(i) $x^{100}+y^{100} \leq P(x, y) \leq 101\left(x^{100}+y^{100}\right)$
(ii) $(x-y) P(x, y)=(x-1) P(x, 1)+(1-y) P(1, y)$.

7 Let X, Y, Z be the points outside the $\triangle A B C$ such that $\angle B A Z=\angle C A Y, \angle C B X=\angle A B Z, \angle A C Y=$ $\angle B C X$. Prove that the lines $A X, B Y, C Z$ are concurrent.

8 For any positive integers x, y, z and w, prove that x^{2}, y^{2}, z^{2} and w^{2} cannot be four consecutive terms of arithmetic sequence.

