Art of Problem Solving

AoPS Community

Korea National Olympiad 2006

www.artofproblemsolving.com/community/c629318
by PARISsaintGERMAIN

- Day 1

1 Given that for reals a_{1}, \cdots, a_{2004}, equation $x^{2006}-2006 x^{2005}+a_{2004} x^{2004}+\cdots+a_{2} x^{2}+a_{1} x+1=0$ has 2006 positive real solution, find the maximum possible value of a_{1}.

2 Alice and Bob are playing "factoring game." On the paper, $270000\left(=2^{4} 3^{3} 5^{4}\right)$ is written and each person picks one number from the paper(call it N) and erase N and writes integer X, Y such that $N=X Y$ and $\operatorname{gcd}(X, Y) \neq 1$. Alice goes first and the person who can no longer make this factoring loses. If two people use optimal strategy, prove that Alice always win.

3 For three positive integers a, b and c, if $\operatorname{gcd}(a, b, c)=1$ and $a^{2}+b^{2}+c^{2}=2(a b+b c+c a)$, prove that all of a, b, c is perfect square.

4 On the circle O, six points A, B, C, D, E, F are on the circle counterclockwise. $B D$ is the diameter of the circle and it is perpendicular to $C F$. Also, lines $C F, B E, A D$ is concurrent. Let M be the foot of altitude from B to $A C$ and let N be the foot of altitude from D to $C E$. Prove that the area of $\triangle M N C$ is less than half the area of $\square A C E F$.

- Day 2

$5 \quad$ Find all positive integers n such that $\phi(n)$ is the fourth power of some prime.
6 Prove that for any positive real numbers x, y and $z, x y z(x+2)(y+2)(z+2) \leq\left(1+\frac{2(x y+y z+z x)}{3}\right)^{3}$

7 Points A, B, C, D, E, F is on the circle O. A line ℓ is tangent to O at E is parallel to $A C$ and $D E>E F$. Let P, Q be the intersection of ℓ and $B C, C D$, respectively and let R, S be the intersection of ℓ and $C F, D F$, respectively. Show that $P Q=R S$ if and only if $Q E=E R$.

827 students are given a number from 1 to 27 . How many ways are there to divide 27 students into 9 groups of 3 with the following condition?
(i) The sum of students number in each group is $1(\bmod 3)$
(ii) There are no such two students where their numbering differs by 3 .

