

AoPS Community

2006 Korea National Olympiad

Korea National Olympiad 2006

www.artofproblemsolving.com/community/c629318 by PARISsaintGERMAIN

-	Day 1
1	Given that for reals a_1, \dots, a_{2004} , equation $x^{2006} - 2006x^{2005} + a_{2004}x^{2004} + \dots + a_2x^2 + a_1x + 1 = 0$ has 2006 positive real solution, find the maximum possible value of a_1 .
2	Alice and Bob are playing "factoring game." On the paper, $270000(=2^43^35^4)$ is written and each person picks one number from the paper(call it N) and erase N and writes integer X, Y such that $N = XY$ and $gcd(X, Y) \neq 1$. Alice goes first and the person who can no longer make this factoring loses. If two people use optimal strategy, prove that Alice always win.
3	For three positive integers a, b and c , if $gcd(a, b, c) = 1$ and $a^2 + b^2 + c^2 = 2(ab + bc + ca)$, prove that all of a, b, c is perfect square.
4	On the circle O , six points A, B, C, D, E, F are on the circle counterclockwise. BD is the diameter of the circle and it is perpendicular to CF . Also, lines CF, BE, AD is concurrent. Let M be the foot of altitude from B to AC and let N be the foot of altitude from D to CE . Prove that the area of $\triangle MNC$ is less than half the area of $\square ACEF$.
-	Day 2
5	Find all positive integers n such that $\phi(n)$ is the fourth power of some prime.
6	Prove that for any positive real numbers x, y and $z, xyz(x+2)(y+2)(z+2) \le (1 + \frac{2(xy+yz+zx)}{3})^3$
7	Points A, B, C, D, E, F is on the circle O . A line ℓ is tangent to O at E is parallel to AC and $DE > EF$. Let P, Q be the intersection of ℓ and BC, CD ,respectively and let R, S be the intersection of ℓ and CF, DF ,respectively. Show that $PQ = RS$ if and only if $QE = ER$.
8	27 students are given a number from 1 to 27 . How many ways are there to divide 27 students into 9 groups of 3 with the following condition?
	(i) The sum of students number in each group is $1 \pmod{3}$ (ii) There are no such two students where their numbering differs by 3 .

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱