AoPS Community

China Girls Math Olympiad 2017
www.artofproblemsolving.com/community/c629823
by CinarArslan, smy2012, Lsway, sqing, Hermitianism, yufanfeng

- Day 1

1 (1) Find all positive integer n such that for any odd integer a, we have $4 \mid a^{n}$ - 1
(2) Find all positive integer n such that for any odd integer a, we have $2^{2017} \mid a^{n}-1$

2 Given quadrilateral $A B C D$ such that $\angle B A D+2 \angle B C D=180^{\circ}$.
Let E be the intersection of $B D$ and the internal bisector of $\angle B A D$.
The perpendicular bisector of $A E$ intersects $C B, C D$ at X, Y, respectively.
Prove that A, C, X, Y are concyclic.
3 Given $a_{i} \geq 0, x_{i} \in \mathbb{R},(i=1,2, \ldots, n)$. Prove that

$$
\left(\left(1-\sum_{i=1}^{n} a_{i} \cos x_{i}\right)^{2}+\left(1-\sum_{i=1}^{n} a_{i} \sin x_{i}\right)^{2}\right)^{2} \geq 4\left(1-\sum_{i=1}^{n} a_{i}\right)^{3}
$$

4 Partition $\frac{1}{2002}, \frac{1}{2003}, \frac{1}{2004}, \ldots, \frac{1}{2017}$ into two groups. Define A the sum of the numbers in the first group, and B the sum of the numbers in the second group. Find the partition such that $|A-B|$ attains it minimum and explains the reason.

- Day 2

5 Let $0=x_{0}<x_{1}<\cdots<x_{n}=1$. Find the largest real number C such that for any positive integer n, we have

$$
\sum_{k=1}^{n} x_{k}^{2}\left(x_{k}-x_{k-1}\right)>C
$$

6 Given a finite set X, two positive integers n, k, and a map $f: X \rightarrow X$. Define $f^{(1)}(x)=$ $f(x), f^{(i+1)}(x)=f^{(i)}(x), i=1,2,3, \ldots$ It is known that for any $x \in X, f^{(n)}(x)=x$.
Define m_{j} the number of $x \in X$ satisfying $f^{(j)}(x)=x$.
Prove that:
(1) $\frac{1}{n} \sum_{j=1}^{n} m_{j} \sin \frac{2 k j \pi}{n}=0$
(2) $\frac{1}{n} \sum_{j=1}^{n} m_{j} \cos \frac{2 k j \pi}{n}$ is a non-negative integer.

7 This is a very classical problem.
Let the $A B C D$ be a cyclic quadrilateral with circumcircle ω_{1}. Lines $A C$ and $B D$ intersect at
point E, and lines $A D, B C$ intersect at point F.Circle ω_{2} is tangent to segments $E B, E C$ at points M, N respectively, and intersects with circle ω_{1} at points Q, R.Lines $B C, A D$ intersect line $M N$ at S, T respectively. Show that Q, R, S, T are concyclic.

8 Let n be a fixed positive integer. Let

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]
$$

be two $n \times n$ tables such that $\left\{a_{i j} \mid 1 \leq i, j \leq n\right\}=\left\{b_{i j} \mid 1 \leq i, j \leq n\right\}=\left\{k \in N^{*} \mid 1 \leq k \leq n^{2}\right\}$. One can perform the following operation on table A : Choose 2 numbers in the same row or in the same column of A, interchange these 2 numbers, and leave the remaining $n^{2}-2$ numbers unchanged. This operation is called a transposition of A.
Find, with proof, the smallest positive integer m such that for any tables A and B, one can perform at most m transpositions such that the resulting table of A is B.

