

AoPS Community

2017 China Girls Math Olympiad

China Girls Math Olympiad 2017

www.artofproblemsolving.com/community/c629823

by CinarArslan, smy2012, Lsway, sqing, Hermitianism, yufanfeng

-	Day 1
1	(1) Find all positive integer n such that for any odd integer a , we have $4 \mid a^n - 1$ (2) Find all positive integer n such that for any odd integer a , we have $2^{2017} \mid a^n - 1$
2	Given quadrilateral $ABCD$ such that $\angle BAD + 2\angle BCD = 180^{\circ}$. Let <i>E</i> be the intersection of <i>BD</i> and the internal bisector of $\angle BAD$. The perpendicular bisector of <i>AE</i> intersects <i>CB</i> , <i>CD</i> at <i>X</i> , <i>Y</i> , respectively. Prove that <i>A</i> , <i>C</i> , <i>X</i> , <i>Y</i> are concyclic.
3	Given $a_i \ge 0, x_i \in \mathbb{R}, (i = 1, 2,, n)$. Prove that $((1 - \sum_{i=1}^n a_i \cos x_i)^2 + (1 - \sum_{i=1}^n a_i \sin x_i)^2)^2 \ge 4(1 - \sum_{i=1}^n a_i)^3$
4	Partition $\frac{1}{2002}$, $\frac{1}{2003}$, $\frac{1}{2004}$,, $\frac{1}{2017}$ into two groups. Define A the sum of the numbers in the first group, and B the sum of the numbers in the second group. Find the partition such that $ A - B $ attains it minimum and explains the reason.
-	Day 2
5	Let $0 = x_0 < x_1 < \cdots < x_n = 1$. Find the largest real number C such that for any positive integer n , we have $\sum_{k=1}^n x_k^2 (x_k - x_{k-1}) > C$
6	Given a finite set X, two positive integers n, k , and a map $f : X \to X$. Define $f^{(1)}(x) = f^{(x)}, f^{(i+1)}(x) = f^{(i)}(x), i = 1, 2, 3,$ It is known that for any $x \in X, f^{(n)}(x) = x$. Define m_j the number of $x \in X$ satisfying $f^{(j)}(x) = x$. Prove that: $(1)\frac{1}{n}\sum_{j=1}^{n}m_j \sin \frac{2kj\pi}{n} = 0$ $(2)\frac{1}{n}\sum_{j=1}^{n}m_j \cos \frac{2kj\pi}{n}$ is a non-negative integer.
7	This is a very classical problem. Let the <i>ABCD</i> be a cyclic quadrilateral with circumcircle ω_1 .Lines <i>AC</i> and <i>BD</i> intersect at

AoPS Community

2017 China Girls Math Olympiad

point *E*,and lines *AD*,*BC* intersect at point *F*.Circle ω_2 is tangent to segments *EB*, *EC* at points *M*, *N* respectively,and intersects with circle ω_1 at points *Q*, *R*.Lines *BC*, *AD* intersect line *MN* at *S*, *T* respectively.Show that *Q*, *R*, *S*, *T* are concyclic.

8 Let *n* be a fixed positive integer. Let

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \text{ and } B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

be two $n \times n$ tables such that $\{a_{ij} | 1 \le i, j \le n\} = \{b_{ij} | 1 \le i, j \le n\} = \{k \in N^* | 1 \le k \le n^2\}$. One can perform the following operation on table *A*: Choose 2 numbers in the same row or in the same column of *A*, interchange these 2 numbers, and leave the remaining $n^2 - 2$ numbers unchanged. This operation is called a **transposition** of *A*.

Find, with proof, the smallest positive integer m such that for any tables A and B, one can perform at most m transpositions such that the resulting table of A is B.

