AoPS Community

1996 Korea National Olympiad

Korea National Olympiad 1996

www.artofproblemsolving.com/community/c631367
by PARISsaintGERMAIN

1 If you draw 4 points on the unit circle, prove that you can always find two points where their distance between is less than $\sqrt{2}$.

2 Let the $f: \mathbb{N} \rightarrow \mathbb{N}$ be the function such that
(i) For all positive integers $n, f(n+f(n))=f(n)$
(ii) $f\left(n_{o}\right)=1$ for some n_{0}

Prove that $f(n) \equiv 1$.
3 Let $a=\lfloor\sqrt{n}\rfloor$ for given positive integer n.
Express the summation $\sum_{k=1}^{n}\lfloor\sqrt{k}\rfloor$ in terms of n and a.
$4 \quad$ Circle C (the center is C.) is inside the $\angle X O Y$ and it is tangent to the two sides of the angle. Let C_{1} be the circle that passes through the center of C and tangent to two sides of angle and let A be one of the endpoint of diameter of C_{1} that passes through C and B be the intersection of this diameter and circle C. Prove that the cirlce that A is the center and $A B$ is the radius is also tangent to the two sides of $\angle X O Y$.
$5 \quad$ Find all integer solution triple (x, y, z) such that $x^{2}+y^{2}+z^{2}-2 x y z=0$.
6 Find the minimum value of k such that there exists two sequence a_{i}, b_{i} for $i=1,2, \cdots, k$ that satisfies the following conditions.
(i) For all $i=1,2, \cdots, k, a_{i}, b_{i}$ is the element of $S=\left\{1996^{n} \mid n=0,1,2, \cdots\right\}$.
(ii) For all $i=1,2, \cdots, k, a_{i} \neq b_{i}$.
(iii) For all $i=1,2, \cdots, k, a_{i} \leq a_{i+1}$ and $b_{i} \leq b_{i+1}$.
(iv) $\sum_{i=1}^{k} a_{i}=\sum_{i=1}^{k} b_{i}$.

7 Let A_{n} be the set of real numbers such that each element of A_{n} can be expressed as $1+\frac{a_{1}}{\sqrt{2}}+$ $\frac{a_{2}}{(\sqrt{2})^{2}}+\cdots+\frac{a_{n}}{(\sqrt{n})^{n}}$ for given n. Find both $\left|A_{n}\right|$ and sum of the products of two distinct elements of A_{n} where each a_{i} is either 1 or -1 .

8 Let $\triangle A B C$ be the acute triangle such that $A B \neq A C$. Let V be the intersection of $B C$ and angle bisector of $\angle A$. Let D be the foot of altitude from A to $B C$. Let E, F be the intersection of circumcircle of $\triangle A V D$ and $C A, A B$ respectively. Prove that the lines $A D, B E, C F$ is concurrent.

