

AoPS Community

Korea National Olympiad 1996

www.artofproblemsolving.com/community/c631367 by PARISsaintGERMAIN

- 1 If you draw 4 points on the unit circle, prove that you can always find two points where their distance between is less than $\sqrt{2}$.
- 2 Let the $f : \mathbb{N} \to \mathbb{N}$ be the function such that (i) For all positive integers n, f(n + f(n)) = f(n)(ii) $f(n_o) = 1$ for some n_0

Prove that $f(n) \equiv 1$.

- **3** Let $a = \lfloor \sqrt{n} \rfloor$ for given positive integer *n*. Express the summation $\sum_{k=1}^{n} \lfloor \sqrt{k} \rfloor$ in terms of *n* and *a*.
- **4** Circle C (the center is C.) is inside the $\angle XOY$ and it is tangent to the two sides of the angle. Let C_1 be the circle that passes through the center of C and tangent to two sides of angle and let A be one of the endpoint of diameter of C_1 that passes through C and B be the intersection of this diameter and circle C. Prove that the cirlce that A is the center and AB is the radius is also tangent to the two sides of $\angle XOY$.
- **5** Find all integer solution triple (x, y, z) such that $x^2 + y^2 + z^2 2xyz = 0$.
- **6** Find the minimum value of k such that there exists two sequence a_i, b_i for $i = 1, 2, \dots, k$ that satisfies the following conditions.

(i) For all $i = 1, 2, \dots, k, a_i, b_i$ is the element of $S = \{1996^n | n = 0, 1, 2, \dots\}$. (ii) For all $i = 1, 2, \dots, k, a_i \neq b_i$. (iii) For all $i = 1, 2, \dots, k, a_i \leq a_{i+1}$ and $b_i \leq b_{i+1}$. (iv) $\sum_{i=1}^k a_i = \sum_{i=1}^k b_i$.

- 7 Let A_n be the set of real numbers such that each element of A_n can be expressed as $1 + \frac{a_1}{\sqrt{2}} + \frac{a_2}{(\sqrt{2})^2} + \dots + \frac{a_n}{(\sqrt{n})^n}$ for given n. Find both $|A_n|$ and sum of the products of two distinct elements of A_n where each a_i is either 1 or -1.
- 8 Let $\triangle ABC$ be the acute triangle such that $AB \neq AC$. Let V be the intersection of BC and angle bisector of $\angle A$. Let D be the foot of altitude from A to BC. Let E, F be the intersection of circumcircle of $\triangle AVD$ and CA, AB respectively. Prove that the lines AD, BE, CF is concurrent.

Art of Problem Solving is an ACS WASC Accredited School.