Art of Problem Solving

AoPS Community

2018 Korea - Final Round

Final Round - Korea 2018

www.artofproblemsolving.com/community/c632465
by PARISsaintGERMAIN, Iminsl, cloneofsimo, rkm0959

Day 1 March 24th
1 Find all integers of the form $\frac{m-6 n}{m+2 n}$ where m, n are nonzero rational numbers satisfying $m^{3}=$ $\left(27 n^{2}+1\right)(m+2 n)$.

2 Triangle $A B C$ satisfies $\angle A B C<\angle B C A<\angle C A B<90^{\circ}$. O is the circumcenter of triangle $A B C$, and K is the reflection of O in $B C . D, E$ is the foot of perpendicular line from K to line $A B, A C$, respectively. Line $D E$ meets $B C$ at P, and a circle with diameter $A K$ meets the circumcircle of triangle $A B C$ at $Q(\neq A)$. If $P Q$ cuts the perpendicular bisector of $B C$ at S, then prove that S lies on the circle with diameter $A K$.

3 For 31 years, n (i6) tennis players have records of wins. It turns out that for every two players, there is a third player who has won over them before. Prove that for every integer k, l such that $2^{2^{k}+1}-1>n, 1<l<2 k+1$, there exist l players ($A_{1}, A_{2}, \ldots, A_{l}$) such that every player A_{i+1} won over A_{i}. $\left(A_{l+1}\right.$ is same as $\left.A_{1}\right)$

Day 2 March 25th
4 Triangle $A B C$ satisfies $\angle C=90^{\circ}$. A circle passing A, B meets segment $A C$ at $G(\neq A, C)$ and it meets segment $B C$ at point $D(\neq B)$. Segment $A D$ cuts segment $B G$ at H, and let l, the perpendicular bisector of segment $A D$, cuts the perpendicular bisector of segment $A B$ at point E. A line passing D is perpendicular to $D E$ and cuts l at point F. If the circumcircle of triangle $C F H$ cuts $A C, B C$ at $P(\neq C), Q(\neq C)$ respectively, then prove that $P Q$ is perpendicular to FH.

5 Determine whether or not two polynomials P, Q with degree no less than 2018 and with integer coefficients exist such that

$$
P(Q(x))=3 Q(P(x))+1
$$

for all real numbers x.
6 Twenty ants live on the faces of an icosahedron, one ant on each side, where the icosahedron have each side with length 1 . Each ant moves in a counterclockwise direction on each face, along the side/edges. The speed of each ant must be no less than 1 always. Also, if two ants meet, they should meet at the vertex of the icosahedron. If five ants meet at the same time at a vertex, we call that a collision. Can the ants move forever, in a way that no collision occurs?

