Art of Problem Solving

AoPS Community

Canada National Olympiad 2018
www.artofproblemsolving.com/community/c635603
by Amir Hossein

1 Consider an arrangement of tokens in the plane, not necessarily at distinct points. We are allowed to apply a sequence of moves of the following kind: select a pair of tokens at points A and B and move both of them to the midpoint of A and B.

We say that an arrangement of n tokens is collapsible if it is possible to end up with all n tokens at the same point after a finite number of moves. Prove that every arrangement of n tokens is collapsible if and only if n is a power of 2 .

2 Let five points on a circle be labelled A, B, C, D, and E in clockwise order. Assume $A E=D E$ and let P be the intersection of $A C$ and $B D$. Let Q be the point on the line through A and B such that A is between B and Q and $A Q=D P$ Similarly, let R be the point on the line through C and D such that D is between C and R and $D R=A P$. Prove that $P E$ is perpendicular to $Q R$.
$3 \quad$ Two positive integers a and b are prime-related if $a=p b$ or $b=p a$ for some prime p. Find all positive integers n, such that n has at least three divisors, and all the divisors can be arranged without repetition in a circle so that any two adjacent divisors are prime-related.

Note that 1 and n are included as divisors.
4 Find all polynomials $p(x)$ with real coefficients that have the following property: there exists a polynomial $q(x)$ with real coefficients such that

$$
p(1)+p(2)+p(3)+\cdots+p(n)=p(n) q(n)
$$

for all positive integers n.
$5 \quad$ Let k be a given even positive integer. Sarah first picks a positive integer N greater than 1 and proceeds to alter it as follows: every minute, she chooses a prime divisor p of the current value of N, and multiplies the current N by $p^{k}-p^{-1}$ to produce the next value of N. Prove that there are infinitely many even positive integers k such that, no matter what choices Sarah makes, her number N will at some point be divisible by 2018.

