

AoPS Community

2018 Serbia National Math Olympiad

Serbia National Math Olympiad 2018

www.artofproblemsolving.com/community/c636258 by CinarArslan, Wolowizard, ThE-dArK-IOrD

-	Day 1
1	Let $\triangle ABC$ be a triangle with incenter <i>I</i> . Points <i>P</i> and <i>Q</i> are chosen on segmets <i>BI</i> and <i>CI</i> such that $2\angle PAQ = \angle BAC$. If <i>D</i> is the touch point of incircle and side <i>BC</i> prove that $\angle PDQ = 90$.
2	Let $n > 1$ be an integer. Call a number beautiful if its square leaves an odd remainder upon divison by n . Prove that the number of consecutive beautiful numbers is less or equal to $1 + \lfloor \sqrt{3n} \rfloor$.
3	Let <i>n</i> be a positive integer. There are given <i>n</i> lines such that no two are parallel and no three meet at a single point. a) Prove that there exists a line such that the number of intersection points of these <i>n</i> lines on both of its sides is at least $\left\lfloor \frac{(n-1)(n-2)}{10} \right\rfloor.$
	Notice that the points on the line are not counted. b) Find all n for which there exists a configurations where the equality is achieved.
-	Day 2
4	Prove that there exists a uniqe $P(x)$ polynomial with real coefficients such that $xy - x - y (x + y)^{1000} - P(x) - P(y)$ for all real x, y .
5	Let $a, b > 1$ be odd positive integers. A board with a rows and b columns without fields $(2, 1), (a-2, b)$ and (a, b) is tiled with 2×2 squares and 2×1 dominoes (that can be rotated). Prove that the number of dominoes is at least $\frac{3}{2}(a+b) - 6.$
6	For each positive integer k, let n_k be the smallest positive integer such that there exists a finite

6 For each positive integer k, let n_k be the smallest positive integer such that there exists a finite set A of integers satisfy the following properties:

-For every $a \in A$, there exists $x, y \in A$ (not necessary distinct) that

$$n_k \mid a - x - y$$

AoPS Community

2018 Serbia National Math Olympiad

-There's no subset B of A that $|B| \leq k$ and

$$n_k \mid \sum_{b \in B} b.$$

Show that for all positive integers $k \ge 3$, we've

$$n_k < \left(\frac{13}{8}\right)^{k+2}.$$

Art of Problem Solving is an ACS WASC Accredited School.