AoPS Community

Serbia National Math Olympiad 2018

www.artofproblemsolving.com/community/c636258
by CinarArslan, Wolowizard, ThE-dArK-IOrD

- Day 1

1 Let $\triangle A B C$ be a triangle with incenter I. Points P and Q are chosen on segmets $B I$ and $C I$ such that $2 \angle P A Q=\angle B A C$. If D is the touch point of incircle and side $B C$ prove that $\angle P D Q=$ 90.

2 Let $n>1$ be an integer. Call a number beautiful if its square leaves an odd remainder upon divison by n. Prove that the number of consecutive beautiful numbers is less or equal to $1+$ $\lfloor\sqrt{3 n}\rfloor$.

3 Let n be a positive integer. There are given n lines such that no two are parallel and no three meet at a single point.
a) Prove that there exists a line such that the number of intersection points of these n lines on both of its sides is at least

$$
\left\lfloor\frac{(n-1)(n-2)}{10}\right\rfloor .
$$

Notice that the points on the line are not counted.
b) Find all n for which there exists a configurations where the equality is achieved.

- Day 2

4 Prove that there exists a uniqe $P(x)$ polynomial with real coefficients such that $x y-x-y \mid(x+y)^{1000}-P(x)-P(y)$ for all real x, y.

5 Let $a, b>1$ be odd positive integers. A board with a rows and b columns without fields (2, 1), (a$2, b)$ and (a, b) is tiled with 2×2 squares and 2×1 dominoes (that can be rotated). Prove that the number of dominoes is at least

$$
\frac{3}{2}(a+b)-6 .
$$

6 For each positive integer k, let n_{k} be the smallest positive integer such that there exists a finite set A of integers satisfy the following properties:
-For every $a \in A$, there exists $x, y \in A$ (not necessary distinct) that

$$
n_{k} \mid a-x-y
$$

-There's no subset B of A that $|B| \leq k$ and

$$
n_{k} \mid \sum_{b \in B} b .
$$

Show that for all positive integers $k \geq 3$, we've

$$
n_{k}<\left(\frac{13}{8}\right)^{k+2}
$$

