AoPS Community

Moldova Team Selection Test 2018

www.artofproblemsolving.com/community/c638272
by Snakes, microsoft_office_word, ArqadyFan_1337, fastlikearabbit, Valikk202, Peter

- Day 1
$1 \quad$ Let $x, y, z \in \mathbb{Q}$,such that $(x+y+z)^{3}=9\left(x^{2} y+y^{2} z+z^{2} x\right)$. Prove that $x=y=z$
2 The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is defined recursively as $a_{0}=a_{1}=1, a_{n+2}=5 a_{n+1}-a_{n}-1, \forall n \in \mathbb{N}$ Prove that

$$
a_{n} \mid a_{n+1}^{2}+a_{n+1}+1
$$

for any $n \in \mathbb{N}$
3 Let O be the circumcenter of an acute triangle $A B C$. Line $O A$ intersects the altitudes of $A B C$ through B and C at P and Q, respectively. The altitudes meet at H. Prove that the circumcenter of triangle $P Q H$ lies on a median of triangle $A B C$.

4 A pupil is writing on a board positive integers $x_{0}, x_{1}, x_{2}, x_{3} \ldots$ after the following algorithm which implies arithmetic progression $3,5,7,9 \ldots$.Each term of rank $k \geq 2$ is a difference between the product of the last number on the board and the term of arithmetic progression of rank k and the last but one term on the bord with the sum of the terms of the arithemtic progression with ranks less than k.If $x_{0}=0$ and $x_{1}=1$ find x_{n} according to n .

- Day 2

$5 \quad$ Let $n, \in \mathbb{N}^{*}, n \geq 3$
a) Prove that the polynomial $f(x)=\frac{X^{2^{n}-1}-1}{X-1}-X^{n}$ has a divisor of form $X^{p}+1$ where $p \in \mathbb{N}^{*}$
b) Show that for $n=7$ the polynomial $f(X)$ has three divisors with integer coefficients .

6 Let a, b, c be positive real numbers such that $a+b+c=3$. Show that

$$
\frac{a}{1+b^{2}}+\frac{b}{1+c^{2}}+\frac{c}{1+a^{2}} \geq \frac{3}{2} .
$$

7 Let the triangle $A B C$ with $m(\angle A B C)=60^{\circ}$ and $m(\angle B A C)=40^{\circ}$. Points D and E are on the sides $(A B)$ and $(A C)$ such that $m(\angle D C B)=70^{\circ}$ and $m(\angle E B C)=40^{\circ}$. $B E$ and $C D$ intersect in F. Prove that $B C$ and $A F$ are perpendicular.

8 Let the set $A=1,2,3, \ldots, 48 n+24$, where $n \in \mathbb{N}^{*}$. Prove that there exist a subset B of A with $24 n+12$ elements with the property : the sum of the squares of the elements of the set B is equal to the sum of the squares of the elements of the set $A B$.

- Day 3

9 The positive integers a and b satisfy the sistem $\left\{\begin{array}{l}a_{10}+b_{10}=a \\ a_{11}+b_{11}=b\end{array}\right.$ where $a_{1}<a_{2}<\ldots$ and $b_{1}<b_{2}<\ldots$ are the positive divisors of a and b.
Find a and b.
10 The positive real numbers a, b, c, d satisfy the equality $\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}+\frac{1}{d+1}=3$. Prove the inequality $\sqrt[3]{a b c}+\sqrt[3]{b c d}+\sqrt[3]{c d a}+\sqrt[3]{d a b} \leq \frac{4}{3}$.

11 Let Ω be the circumcincle of the quadrilateral $A B C D$, and E the intersection point of the diagonals $A C$ and $B D$. A line passing through E intersects $A B$ and $B C$ in points P and Q. A circle , that is passing through point D, is tangent to the line $P Q$ in point E and intersects Ω in point R, different from D. Prove that the points B, P, Q, and R are concyclic .

12 Let $p>3$ is a prime number and $k=\left\lfloor\frac{2 p}{3}\right\rfloor$. Prove that

$$
\binom{p}{1}+\binom{p}{2}+\cdots+\binom{p}{k}
$$

is divisible by p^{2}.

