AoPS Community

Romania National Olympiad 2018

www.artofproblemsolving.com/community/c638805
by CinarArslan, Catalin

- \quad Grade 9

1 Prove that if in a triangle the orthocenter, the centroid and the incenter are collinear, then the triangle is isosceles.

2 Let $a, b, c \geq 0$ and $a+b+c=3$. Prove that

$$
\frac{a}{1+b}+\frac{b}{1+c}+\frac{c}{1+a} \geq \frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+a}
$$

3 Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two quadratics such that, for any real number r, if $f(r)$ is an integer, then $g(r)$ is also an integer.
Prove that there are two integers m and n such that

$$
g(x)=m f(x)+n, \forall x \in \mathbb{R}
$$

4 Let $n \in \mathbb{N}^{*}$ and consider a circle of length $6 n$ along with $3 n$ points on the circle which divide it into $3 n$ arcs: n of them have length 1 , some other n have length 2 and the remaining n have length 3.
Prove that among these points there must be two such that the line that connects them passes through the center of the circle.

- \quad Grade 10

1 Let $n \in \mathbb{N}_{\geq 2}$ and $a_{1}, a_{2}, \ldots, a_{n} \in(1, \infty)$. Prove that $f:[0, \infty) \rightarrow \mathbb{R}$ with

$$
f(x)=\left(a_{1} a_{2} \ldots a_{n}\right)^{x}-a_{1}^{x}-a_{2}^{x}-\ldots-a_{n}^{x}
$$

is a strictly increasing function.
2 Let $A B C$ be a triangle, O its circumcenter and $R=1$ its circumradius. Let G_{1}, G_{2}, G_{3} be the centroids of the triangles $O B C, O A C$ and $O A B$. Prove that the triangle $A B C$ is equilateral if and only if

$$
A G_{1}+B G_{2}+C G_{3}=4
$$

3 Let $n \in \mathbb{N}_{\geq 2}$. Prove that for any complex numbers $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$, the following statements are equivalent:
a) $\sum_{k=1}^{n}\left|z-a_{k}\right|^{2} \leq \sum_{k=1}^{n}\left|z-b_{k}\right|^{2}, \forall z \in \mathbb{C}$.
b) $\sum_{k=1}^{n=1} a_{k}=\sum_{k=1}^{n} b_{k}$ and $\sum_{k=1}^{n}\left|a_{k}\right|^{2} \leq \sum_{k=1}^{n}\left|b_{k}\right|^{2}$.

4 Let $n \in \mathbb{N}_{\geq 2}$. For any real numbers $a_{1}, a_{2}, \ldots, a_{n}$ denote $S_{0}=1$ and for $1 \leq k \leq n$ denote

$$
S_{k}=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n} a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}
$$

Find the number of n-tuples $\left(a_{1}, a_{2}, \ldots a_{n}\right)$ such that

$$
\left(S_{n}-S_{n-2}+S_{n-4}-\ldots\right)^{2}+\left(S_{n-1}-S_{n-3}+S_{n-5}-\ldots\right)^{2}=2^{n} S_{n}
$$

- \quad Grade 11

1 Let $n \geq 2$ be a positive integer and, for all vectors with integer entries

$$
X=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

let $\delta(X) \geq 0$ be the greatest common divisor of $x_{1}, x_{2}, \ldots, x_{n}$. Also, consider $A \in \mathcal{M}_{n}(\mathbb{Z})$.
Prove that the following statements are equivalent: i) $|\operatorname{det} A|=1$ ii) $\delta(A X)=\delta(X)$, for all vectors $X \in \mathcal{M}_{n, 1}(\mathbb{Z})$.

Romeo Raicu

2 Let $x>0$. Prove that

$$
2^{-x}+2^{-1 / x} \leq 1
$$

3 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function with the intermediate value property. If f is injective on $\mathbb{R} \backslash \mathbb{Q}$, prove that f is continuous on \mathbb{R}.

Julieta R. Vergulescu

$4 \quad$ Let n be an integer with $n \geq 2$ and let $A \in \mathcal{M}_{n}(\mathbb{C})$ such that $\operatorname{rank} A \neq \operatorname{rank} A^{2}$. Prove that there exists a nonzero matrix $B \in \mathcal{M}_{n}(\mathbb{C})$ such that

$$
A B=B A=B^{2}=0
$$

Cornel Delasava

- \quad Grade 12

1 Let A be a finite ring and $a, b \in A$, such that $(a b-1) b=0$. Prove that $b(a b-1)=0$.
2 Let \mathcal{F} be the set of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
e^{f(x)}+f(x) \geq x+1, \forall x \in \mathbb{R}
$$

For $f \in \mathcal{F}$, let

$$
I(f)=\int_{0}^{e} f(x) d x
$$

Determine $\min _{f \in \mathcal{F}} I(f)$.

Liviu Vlaicu

3 Let $f:[a, b] \rightarrow \mathbb{R}$ be an integrable function and $\left(a_{n}\right) \subset \mathbb{R}$ such that $a_{n} \rightarrow 0$. a) If $A=\{m$. $\left.a_{n} \mid m, n \in \mathbb{N}^{*}\right\}$, prove that every open interval of strictly positive real numbers contains elements from A. b) If, for any $n \in \mathbb{N}^{*}$ and for any $x, y \in[a, b]$ with $|x-y|=a_{n}$, the inequality $\left|\int_{x}^{y} f(t) d t\right| \leq|x-y|$ is true, prove that

$$
\left|\int_{x}^{y} f(t) d t\right| \leq|x-y|, \forall x, y \in[a, b]
$$

Nicolae Bourbacut

$4 \quad$ For any $k \in \mathbb{Z}$, define

$$
F_{k}=X^{4}+2(1-k) X^{2}+(1+k)^{2} .
$$

Find all values $k \in \mathbb{Z}$ such that F_{k} is irreducible over \mathbb{Z} and reducible over \mathbb{Z}_{p}, for any prime p. Marius Vladoiu

