

AoPS Community

2018 Romania National Olympiad

Romania National Olympiad 2018

www.artofproblemsolving.com/community/c638805 by CinarArslan, Catalin

- Grade 9
- **1** Prove that if in a triangle the orthocenter, the centroid and the incenter are collinear, then the triangle is isosceles.

2 Let
$$a, b, c \ge 0$$
 and $a + b + c = 3$. Prove that

$$\frac{a}{1+b} + \frac{b}{1+c} + \frac{c}{1+a} \geq \frac{1}{1+b} + \frac{1}{1+c} + \frac{1}{1+a}$$

3 Let $f, g : \mathbb{R} \to \mathbb{R}$ be two quadratics such that, for any real number r, if f(r) is an integer, then g(r) is also an integer. Prove that there are two integers m and n such that

 $g(x) = mf(x) + n, \,\forall x \in \mathbb{R}$

4 Let $n \in \mathbb{N}^*$ and consider a circle of length 6n along with 3n points on the circle which divide it into 3n arcs: n of them have length 1, some other n have length 2 and the remaining n have length 3.

Prove that among these points there must be two such that the line that connects them passes through the center of the circle.

- Grade 10
- **1** Let $n \in \mathbb{N}_{\geq 2}$ and $a_1, a_2, \ldots, a_n \in (1, \infty)$. Prove that $f : [0, \infty) \to \mathbb{R}$ with

$$f(x) = (a_1 a_2 \dots a_n)^x - a_1^x - a_2^x - \dots - a_n^x$$

is a strictly increasing function.

2 Let ABC be a triangle, O its circumcenter and R = 1 its circumradius. Let G_1, G_2, G_3 be the centroids of the triangles OBC, OAC and OAB. Prove that the triangle ABC is equilateral if and only if

$$AG_1 + BG_2 + CG_3 = 4$$

AoPS Community

2018 Romania National Olympiad

3 Let $n \in \mathbb{N}_{\geq 2}$. Prove that for any complex numbers a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n , the following statements are equivalent:

a) $\sum_{k=1}^{n} |z - a_k|^2 \leq \sum_{k=1}^{n} |z - b_k|^2, \forall z \in \mathbb{C}.$ **b)** $\sum_{k=1}^{n} a_k = \sum_{k=1}^{n} b_k$ and $\sum_{k=1}^{n} |a_k|^2 \leq \sum_{k=1}^{n} |b_k|^2.$

4 Let $n \in \mathbb{N}_{\geq 2}$. For any real numbers $a_1, a_2, ..., a_n$ denote $S_0 = 1$ and for $1 \le k \le n$ denote

$$S_k = \sum_{1 \le i_1 < i_2 < \ldots < i_k \le n} a_{i_1} a_{i_2} \ldots a_{i_k}$$

Find the number of n-tuples $(a_1, a_2, ..., a_n)$ such that

$$(S_n - S_{n-2} + S_{n-4} - \dots)^2 + (S_{n-1} - S_{n-3} + S_{n-5} - \dots)^2 = 2^n S_n.$$

- Grade 11
- 1 Let $n \ge 2$ be a positive integer and, for all vectors with integer entries

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

let $\delta(X) \ge 0$ be the greatest common divisor of x_1, x_2, \ldots, x_n . Also, consider $A \in \mathcal{M}_n(\mathbb{Z})$. Prove that the following statements are equivalent: i) $|\det A| = 1$ ii) $\delta(AX) = \delta(X)$, for all vectors $X \in \mathcal{M}_{n,1}(\mathbb{Z})$.

Romeo Raicu

2 Let x > 0. Prove that

$$2^{-x} + 2^{-1/x} \le 1.$$

3 Let $f : \mathbb{R} \to \mathbb{R}$ be a function with the intermediate value property. If f is injective on $\mathbb{R} \setminus \mathbb{Q}$, prove that f is continuous on \mathbb{R} .

Julieta R. Vergulescu

4 Let *n* be an integer with $n \ge 2$ and let $A \in \mathcal{M}_n(\mathbb{C})$ such that rank $A \ne \operatorname{rank} A^2$. Prove that there exists a nonzero matrix $B \in \mathcal{M}_n(\mathbb{C})$ such that

$$AB = BA = B^2 = 0$$

Cornel Delasava

AoPS Community

- Grade 12
- **1** Let A be a finite ring and $a, b \in A$, such that (ab 1)b = 0. Prove that b(ab 1) = 0.
 - **2** Let \mathcal{F} be the set of continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$e^{f(x)} + f(x) \ge x + 1, \ \forall x \in \mathbb{R}$$

For $f \in \mathcal{F}$, let

$$I(f) = \int_0^e f(x) dx$$

Determine $\min_{f \in \mathcal{F}} I(f)$.

Liviu Vlaicu

3 Let $f : [a,b] \to \mathbb{R}$ be an integrable function and $(a_n) \subset \mathbb{R}$ such that $a_n \to 0$. **a**) If $A = \{m \cdot a_n \mid m, n \in \mathbb{N}^*\}$, prove that every open interval of strictly positive real numbers contains elements from A. **b**) If, for any $n \in \mathbb{N}^*$ and for any $x, y \in [a,b]$ with $|x - y| = a_n$, the inequality $\left|\int_x^y f(t)dt\right| \le |x - y|$ is true, prove that

$$\left|\int_{x}^{y} f(t)dt\right| \le |x-y|, \, \forall x, y \in [a,b]$$

Nicolae Bourbacut

4 For any $k \in \mathbb{Z}$, define

$$F_k = X^4 + 2(1-k)X^2 + (1+k)^2.$$

Find all values $k \in \mathbb{Z}$ such that F_k is irreducible over \mathbb{Z} and reducible over \mathbb{Z}_p , for any prime p. *Marius Vladoiu*

