Art of Problem Solving

AoPS Community

Iran Team Selection Test 2018

www.artofproblemsolving.com/community/c639324
by Dadgarnia, M.Sharifi, Etemadi

Test 1 Day 1

1 Let $A_{1}, A_{2}, \ldots, A_{k}$ be the subsets of $\{1,2,3, \ldots, n\}$ such that for all $1 \leq i, j \leq k: A_{i} \cap A_{j} \neq \varnothing$. Prove that there are n distinct positive integers $x_{1}, x_{2}, \ldots, x_{n}$ such that for each $1 \leq j \leq k$:

$$
l c m_{i \in A_{j}}\left\{x_{i}\right\}>l c m_{i \notin A_{j}}\left\{x_{i}\right\}
$$

Proposed by Morteza Saghafian, Mahyar Sefidgaran
2 Determine the least real number k such that the inequality

$$
\left(\frac{2 a}{a-b}\right)^{2}+\left(\frac{2 b}{b-c}\right)^{2}+\left(\frac{2 c}{c-a}\right)^{2}+k \geq 4\left(\frac{2 a}{a-b}+\frac{2 b}{b-c}+\frac{2 c}{c-a}\right)
$$

holds for all real numbers a, b, c.
Proposed by Mohammad Jafari
3 In triangle $A B C$ let M be the midpoint of $B C$. Let ω be a circle inside of $A B C$ and is tangent to $A B, A C$ at E, F, respectively. The tangents from M to ω meet ω at P, Q such that P and B lie on the same side of $A M$. Let $X \equiv P M \cap B F$ and $Y \equiv Q M \cap C E$. If $2 P M=B C$ prove that $X Y$ is tangent to ω.

Proposed by Iman Maghsoudi

Test 1 Day 2

4 Let $A B C$ be a triangle $\left(\angle A \neq 90^{\circ}\right) . B E, C F$ are the altitudes of the triangle. The bisector of $\angle A$ intersects $E F, B C$ at M, N. Let P be a point such that $M P \perp E F$ and $N P \perp B C$. Prove that $A P$ passes through the midpoint of $B C$.

Proposed by Iman Maghsoudi, Hooman Fattahi
5 Prove that for each positive integer m, one can find m consecutive positive integers like n such that the following phrase doesn't be a perfect power.

$$
\left(1^{3}+2018^{3}\right)\left(2^{3}+2018^{3}\right) \cdots\left(n^{3}+2018^{3}\right)
$$

Proposed by Navid Safaei

2018 Iran Team Selection Test

6 A simple graph is called "divisibility", if it's possible to put distinct numbers on its vertices such that there is an edge between two vertices if and only if number of one of its vertices is divisible by another one.

A simple graph is called "permutationary", if it's possible to put numbers $1,2, \ldots, n$ on its vertices and there is a permutation π such that there is an edge between vertices i, j if and only if $i>j$ and $\pi(i)<\pi(j)$ (it's not directed!)

Prove that a simple graph is permutationary if and only if its complement and itself are divisibility.

Proposed by Morteza Saghafian

Test 2 Day 1
1 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the following conditions:
a. $x+f(y+f(x))=y+f(x+f(y)) \quad \forall x, y \in \mathbb{R}$
b. The set $I=\left\{\left.\frac{f(x)-f(y)}{x-y} \right\rvert\, x, y \in \mathbb{R}, x \neq y\right\}$ is an interval.

Proposed by Navid Safaei

2 Mojtaba and Hooman are playing a game. Initially Mojtaba draws 2018 vectors with zero sum. Then in each turn, starting with Mojtaba, the player takes a vector and puts it on the plane. After the first move, the players must put their vector next to the previous vector (the beginning of the vector must lie on the end of the previous vector).
At last, there will be a closed polygon. If this polygon is not self-intersecting, Mojtaba wins. Otherwise Hooman. Who has the winning strategy?

Proposed by Mahyar Sefidgaran, Jafar Namdar
3 Let $a_{1}, a_{2}, a_{3}, \cdots$ be an infinite sequence of distinct integers. Prove that there are infinitely many primes p that distinct positive integers i, j, k can be found such that $p \mid a_{i} a_{j} a_{k}-1$.
Proposed by Mohsen Jamali
Test 2 Day 2
4 Call a positive integer "useful but not optimized " (!), if it can be written as a sum of distinct powers of 3 and powers of 5 .
Prove that there exist infinitely many positive integers which they are not "useful but not optimized".
(e.g. $37=\left(3^{0}+3^{1}+3^{3}\right)+\left(5^{0}+5^{1}\right)$ is a " useful but not optimized" number)

Proposed by Mohsen Jamali

AoPS Community

2018 Iran Team Selection Test

5 Let ω be the circumcircle of isosceles triangle $A B C(A B=A C)$. Points P and Q lie on ω and $B C$ respectively such that $A P=A Q . A P$ and $B C$ intersect at R. Prove that the tangents from B and C to the incircle of $\triangle A Q R$ (different from $B C$) are concurrent on ω.
Proposed by Ali Zamani, Hooman Fattahi
$6 a_{1}, a_{2}, \ldots, a_{n}$ is a sequence of positive integers that has at least $\frac{2 n}{3}+1$ distinct numbers and each positive integer has occurred at most three times in it. Prove that there exists a permutation $b_{1}, b_{2}, \ldots, b_{n}$ of a_{i} 's such that all the n sums $b_{i}+b_{i+1}$ are distinct ($1 \leq i \leq n, b_{n+1} \equiv b_{1}$)

Proposed by Mohsen Jamali

Test 3 Day 1

1 Two circles $\omega_{1}(O)$ and ω_{2} intersect each other at A, B, and O lies on ω_{2}. Let S be a point on $A B$ such that $O S \perp A B$. Line $O S$ intersects ω_{2} at P (other than O). The bisector of $A \hat{S} P$ intersects ω_{1} at L (A and L are on the same side of the line $O P$). Let K be a point on ω_{2} such that $P S=P K(A$ and K are on the same side of the line $O P)$. Prove that $S L=K L$.
Proposed by Ali Zamani
2 Find the maximum possible value of k for which there exist distinct reals $x_{1}, x_{2}, \ldots, x_{k}$ greater than 1 such that for all $1 \leq i, j \leq k$,

$$
x_{i}^{\left\lfloor x_{j}\right\rfloor}=x_{j}^{\left\lfloor x_{i}\right\rfloor} .
$$

Proposed by Morteza Saghafian

$3 n>1$ and distinct positive integers $a_{1}, a_{2}, \ldots, a_{n+1}$ are given. Does there exist a polynomial $p(x) \in \mathbb{Z}[x]$ of degree $\leq n$ that satisfies the following conditions?
a. $\forall_{1 \leq i<j \leq n+1}: \operatorname{gcd}\left(p\left(a_{i}\right), p\left(a_{j}\right)\right)>1$
b. $\forall_{1 \leq i<j<k \leq n+1}: \operatorname{gcd}\left(p\left(a_{i}\right), p\left(a_{j}\right), p\left(a_{k}\right)\right)=1$

Proposed by Mojtaba Zare

Test 3 Day 2

4 We say distinct positive integers $a_{1}, a_{2}, \ldots, a_{n}$ are "good" if their sum is equal to the sum of all pairwise gcd's among them. Prove that there are infinitely many n s such that n good numbers exist.

Proposed by Morteza Saghafian
$5 \quad 2 n-1$ distinct positive real numbers with sum S are given. Prove that there are at least $\binom{2 n-2}{n-1}$ different ways to choose n numbers among them such that their sum is at least $\frac{S}{2}$.

Proposed by Amirhossein Gorzi

6 Consider quadrilateral $A B C D$ inscribed in circle $\omega . P \equiv A C \cap B D$. E, F lie on sides $A B, C D$ respectively such that $A \hat{P} E=D \hat{P} F$. Circles ω_{1}, ω_{2} are tangent to ω at X, Y respectively and also both tangent to the circumcircle of $\triangle P E F$ at P. Prove that:

$$
\frac{E X}{E Y}=\frac{F X}{F Y}
$$

Proposed by Ali Zamani

