Art of Problem Solving

AoPS Community

2017 Morocco TST-

Moroccan Team Selection Test

www.artofproblemsolving.com/community/c642440
by Medjl, mberke, cjquines0, MathStudent2002, Valentin Vornicu

- Day 1

1 Let a, b, c be non-negative real numbers such that $a^{2}+b^{2}+c^{2} \leq 3$ then prove that;

$$
(a+b+c)(a+b+c-a b c) \geq 2\left(a^{2} b+b^{2} c+c^{2} a\right)
$$

2 The leader of an IMO team chooses positive integers n and k with $n>k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an n digit binary string, and the deputy leader writes down all n-digit binary strings which differ from the leaders in exactly k positions. (For example, if $n=3$ and $k=1$, and if the leader chooses 101, the deputy leader would write down 001,111 and 100.) The contestant is allowed to look at the strings written by the deputy leader and guess the leaders string. What is the minimum number of guesses (in terms of n and k) needed to guarantee the correct answer?

3 Let $A B C$ be a triangle with circumcircle Γ and incenter I and let M be the midpoint of $\overline{B C}$. The points D, E, F are selected on sides $\overline{B C}, \overline{C A}, \overline{A B}$ such that $\overline{I D} \perp \overline{B C}, \overline{I E} \perp \overline{A I}$, and $\overline{I F} \perp \overline{A I}$. Suppose that the circumcircle of $\triangle A E F$ intersects Γ at a point X other than A. Prove that lines $X D$ and $A M$ meet on Γ.

Proposed by Evan Chen, Taiwan

- Day 2

4 Two circles G_{1} and G_{2} intersect at two points M and N. Let $A B$ be the line tangent to these circles at A and B, respectively, so that M lies closer to $A B$ than N. Let $C D$ be the line parallel to $A B$ and passing through the point M, with C on G_{1} and D on G_{2}. Lines $A C$ and $B D$ meet at E; lines $A N$ and $C D$ meet at P; lines $B N$ and $C D$ meet at Q. Show that $E P=E Q$.

- \quad ii)Prove that $E N$ bisects $\angle C N D$.

5 Let n be a positive integer relatively prime to 6 . We paint the vertices of a regular n-gon with three colours so that there is an odd number of vertices of each colour. Show that there exists an isosceles triangle whose three vertices are of different colours.

6 For any positive integer k, denote the sum of digits of k in its decimal representation by $S(k)$. Find all polynomials $P(x)$ with integer coefficients such that for any positive integer $n \geq 2016$,
the integer $P(n)$ is positive and

$$
S(P(n))=P(S(n))
$$

Proposed by Warut Suksompong, Thailand

