AoPS Community

Czech And Slovak Mathematical Olympiad, Round III, Category A 2018

www.artofproblemsolving.com/community/c643039
by byk7

1 In a group of people, there are some mutually friendly pairs. For positive integer $k \geq 3$ we say the group is k-great, if every (unordered) k-tuple of people from the group can be seated around a round table it the way that all pairs of neighbors are mutually friendly. (Since this was the 67th year of $\mathrm{CZE} / S V K M O$,) show that if the group is 6 -great, then it is 7 -great as well.
Bonus (not included in the competition): Determine all positive integers $k \geq 3$ for which, if the group is k-great, then it is $(k+1)$-great as well.

2 Let x, y, z be real numbers such that the numbers

$$
\frac{1}{\left|x^{2}+2 y z\right|}, \quad \frac{1}{\left|y^{2}+2 z x\right|}, \quad \frac{1}{\left|z^{2}+2 x y\right|}
$$

are lengths of sides of a (non-degenerate) triangle. Determine all possible values of $x y+y z+z x$.

3 In triangle $A B C$ let be D an intersection of $B C$ and the A-angle bisector. Denote E, F the circumcenters of $A B D$ and $A C D$ respectively. Assuming that the circumcenter of $A E F$ lies on the line $B C$ what is the possible size of the angle $B A C$?

4 Let a, b, c be integers which are lengths of sides of a triangle, $\operatorname{gcd}(a, b, c)=1$ and all the values

$$
\frac{a^{2}+b^{2}-c^{2}}{a+b-c}, \quad \frac{b^{2}+c^{2}-a^{2}}{b+c-a}, \quad \frac{c^{2}+a^{2}-b^{2}}{c+a-b}
$$

are integers as well. Show that $(a+b-c)(b+c-a)(c+a-b)$ or $2(a+b-c)(b+c-a)(c+a-b)$ is a perfect square.

5 Let $A B C D$ an isosceles trapezoid with the longer base $A B$. Denote I the incenter of $\triangle A B C$ and J the excenter relative to the vertex C of $\triangle A C D$. Show that the lines $I J$ and $A B$ are parallel.

6 Determine the least positive integer n with the following property for every 3-coloring of numbers $1,2, \ldots, n$ there are two (different) numbers a, b of the same color such that $|a-b|$ is a perfect square.

