

## **AoPS Community**

## 2018 Spain Mathematical Olympiad

## Spain Mathematical Olympiad 2018

www.artofproblemsolving.com/community/c643326 by CinarArslan, Sumgato, far-reaching

| - | Day 1                                                                                                                                                                                                                                                                                                                |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Find all positive integers $x$ such that $2x + 1$ is a perfect square but none of the integers $2x + 2, 2x + 3,, 3x + 2$ are perfect squares.                                                                                                                                                                        |
| 2 | Let <i>n</i> be a positive integer. $2n + 1$ tokens are in a row, each being black or white. A token is said to be <i>balanced</i> if the number of white tokens on its left plus the number of black tokens on its right is <i>n</i> . Determine whether the number of <i>balanced</i> tokens is even or odd.       |
| 3 | Let $ABC$ be an acute-angled triangle with circumcenter $O$ and let $M$ be a point on $AB$ . The circumcircle of $AMO$ intersects $AC$ a second time on $K$ and the circumcircle of $BOM$ intersects $BC$ a second time on $N$ .                                                                                     |
|   | Prove that $[MNK] \ge \frac{[ABC]}{4}$ and determine the equality case.                                                                                                                                                                                                                                              |
| - | Day 2                                                                                                                                                                                                                                                                                                                |
| 4 | Points on a spherical surface with radius 4 are colored in 4 different colors. Prove that there exist two points with the same color such that the distance between them is either $4\sqrt{3}$ or $2\sqrt{6}$ .                                                                                                      |
|   | (Distance is Euclidean, that is, the length of the straight segment between the points)                                                                                                                                                                                                                              |
| 5 | Let $a, b$ be coprime positive integers. A positive integer $n$ is said to be <i>weak</i> if there do not exist any nonnegative integers $x, y$ such that $ax + by = n$ . Prove that if $n$ is a <i>weak</i> integer and $n < \frac{ab}{6}$ , then there exists an integer $k \ge 2$ such that $kn$ is <i>weak</i> . |
| 6 | Find all functions such that $f : \mathbb{R}^+ \to \mathbb{R}^+$ and $f(x + f(y)) = yf(xy + 1)$ for every $x, y \in \mathbb{R}^+$ .                                                                                                                                                                                  |

🟟 AoPS Online 🔯 AoPS Academy 🐲 AoPS 🗱