Art of Problem Solving

AoPS Community

Spain Mathematical Olympiad 2018

www.artofproblemsolving.com/community/c643326
by CinarArslan, Sumgato, far-reaching

- Day 1

1 Find all positive integers x such that $2 x+1$ is a perfect square but none of the integers $2 x+$ $2,2 x+3, \ldots, 3 x+2$ are perfect squares.

2 Let n be a positive integer. $2 n+1$ tokens are in a row, each being black or white. A token is said to be balanced if the number of white tokens on its left plus the number of black tokens on its right is n. Determine whether the number of balanced tokens is even or odd.

3 Let $A B C$ be an acute-angled triangle with circumcenter O and let M be a point on $A B$. The circumcircle of $A M O$ intersects $A C$ a second time on K and the circumcircle of $B O M$ intersects $B C$ a second time on N.

Prove that $[M N K] \geq \frac{[A B C]}{4}$ and determine the equality case.

- Day 2

4 Points on a spherical surface with radius 4 are colored in 4 different colors. Prove that there exist two points with the same color such that the distance between them is either $4 \sqrt{3}$ or $2 \sqrt{6}$.
(Distance is Euclidean, that is, the length of the straight segment between the points)
5 Let a, b be coprime positive integers. A positive integer n is said to be weak if there do not exist any nonnegative integers x, y such that $a x+b y=n$. Prove that if n is a weak integer and $n<\frac{a b}{6}$, then there exists an integer $k \geq 2$ such that $k n$ is weak.
$6 \quad$ Find all functions such that $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$and $f(x+f(y))=y f(x y+1)$ for every $x, y \in \mathbb{R}^{+}$.

