

AoPS Community

Finals 2018

www.artofproblemsolving.com/community/c643460 by $j_{---}d$

-	Day 1
1	An acute triangle ABC in which $AB < AC$ is given. The bisector of $\angle BAC$ crosses BC at D . Point M is the midpoint of BC . Prove that the line though centers of circles escribed on triangles ABC and ADM is parallel to AD .
2	A subset <i>S</i> of size <i>n</i> of a plane consisting of points with both coordinates integer is given, where <i>n</i> is an odd number. The injective function $f: S \to S$ satisfies the following: for each pair of points $A, B \in S$, the distance between points $f(A)$ and $f(B)$ is not smaller than the distance between points <i>A</i> and <i>B</i> . Prove there exists a point <i>X</i> such that $f(X) = X$.
3	Find all real numbers c for which there exists a function $f \colon \mathbb{R} \to \mathbb{R}$ such that for each $x, y \in \mathbb{R}$ it's true that f(f(x) + f(y)) + cxy = f(x + y).
-	Day 2
4	Let <i>n</i> be a positive integer. Suppose there are exactly <i>M</i> squarefree integers <i>k</i> such that $\lfloor \frac{n}{k} \rfloor$ is odd in the set $\{1, 2,, n\}$. Prove <i>M</i> is odd.
	An integer is squarefree if it is not divisible by any square other than 1 .
5	An acute triangle ABC in which $AB < AC$ is given. Points E and F are feet of its heights from B and C , respectively. The line tangent in point A to the circle escribed on ABC crosses BC at P . The line parallel to BC that goes through point A crosses EF at Q . Prove PQ is perpendicular to the median from A of triangle ABC .
6	A prime $p > 3$ is given. Let K be the number of such permutations $(a_1, a_2,, a_p)$ of $\{1, 2,, p\}$ such that

 $a_1a_2 + a_2a_3 + \ldots + a_{p-1}a_p + a_pa_1$

is divisible by p. Prove K + p is divisible by p^2 .

Art of Problem Solving is an ACS WASC Accredited School.