AoPS Community

Finals 2018

www.artofproblemsolving.com/community/c643460
by j_-d

- Day 1

1 An acute triangle $A B C$ in which $A B<A C$ is given. The bisector of $\angle B A C$ crosses $B C$ at D. Point M is the midpoint of $B C$. Prove that the line though centers of circles escribed on triangles $A B C$ and $A D M$ is parallel to $A D$.

2 A subset S of size n of a plane consisting of points with both coordinates integer is given, where n is an odd number. The injective function $f: S \rightarrow S$ satisfies the following: for each pair of points $A, B \in S$, the distance between points $f(A)$ and $f(B)$ is not smaller than the distance between points A and B. Prove there exists a point X such that $f(X)=X$.
$3 \quad$ Find all real numbers c for which there exists a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for each $x, y \in \mathbb{R}$ it's true that

$$
f(f(x)+f(y))+c x y=f(x+y) .
$$

- Day 2

$4 \quad$ Let n be a positive integer. Suppose there are exactly M squarefree integers k such that $\left\lfloor\frac{n}{k}\right\rfloor$ is odd in the set $\{1,2, \ldots, n\}$. Prove M is odd.

An integer is squarefree if it is not divisible by any square other than 1.
$5 \quad$ An acute triangle $A B C$ in which $A B<A C$ is given. Points E and F are feet of its heights from B and C, respectively. The line tangent in point A to the circle escribed on $A B C$ crosses $B C$ at P. The line parallel to $B C$ that goes through point A crosses $E F$ at Q. Prove $P Q$ is perpendicular to the median from A of triangle $A B C$.
$6 \quad$ A prime $p>3$ is given. Let K be the number of such permutations $\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ of $\{1,2, \ldots, p\}$ such that

$$
a_{1} a_{2}+a_{2} a_{3}+\ldots+a_{p-1} a_{p}+a_{p} a_{1}
$$

is divisible by p. Prove $K+p$ is divisible by p^{2}.

