AoPS Community

USAMO 2018

www.artofproblemsolving.com/community/c644976
by rrusczyk, hwl0304, AllenWang314, tastymath75025, CantonMathGuy, Vfire

Day 1 April 18

1 Let a, b, c be positive real numbers such that $a+b+c=4 \sqrt[3]{a b c}$. Prove that

$$
2(a b+b c+c a)+4 \min \left(a^{2}, b^{2}, c^{2}\right) \geq a^{2}+b^{2}+c^{2} .
$$

2 Find all functions $f:(0, \infty) \rightarrow(0, \infty)$ such that

$$
f\left(x+\frac{1}{y}\right)+f\left(y+\frac{1}{z}\right)+f\left(z+\frac{1}{x}\right)=1
$$

for all $x, y, z>0$ with $x y z=1$.
3 For a given integer $n \geq 2$, let $\left\{a_{1}, a_{2},, a_{m}\right\}$ be the set of positive integers less than n that are relatively prime to n. Prove that if every prime that divides m also divides n, then $a_{1}^{k}+a_{2}^{k}+\cdots+a_{m}^{k}$ is divisible by m for every positive integer k.

Proposed by Ivan Borsenco

Day 2 April 19

4 Let p be a prime, and let a_{1}, \ldots, a_{p} be integers. Show that there exists an integer k such that the numbers

$$
a_{1}+k, a_{2}+2 k, \ldots, a_{p}+p k
$$

produce at least $\frac{1}{2} p$ distinct remainders upon division by p.
Proposed by Ankan Bhattacharya
5 In convex cyclic quadrilateral $A B C D$, we know that lines $A C$ and $B D$ intersect at E, lines $A B$ and $C D$ intersect at F, and lines $B C$ and $D A$ intersect at G. Suppose that the circumcircle of $\triangle A B E$ intersects line $C B$ at B and P, and the circumcircle of $\triangle A D E$ intersects line $C D$ at D and Q, where C, B, P, G and C, Q, D, F are collinear in that order. Prove that if lines $F P$ and $G Q$ intersect at M, then $\angle M A C=90^{\circ}$.

Proposed by Kada Williams

6 Let a_{n} be the number of permutations $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of the numbers $(1,2, \ldots, n)$ such that the n ratios $\frac{x_{k}}{k}$ for $1 \leq k \leq n$ are all distinct. Prove that a_{n} is odd for all $n \geq 1$.

Proposed by Richard Stong

