AoPS Community

Macedonian National Olympiad 2018

www.artofproblemsolving.com/community/c645390
by steppewolf

Problem 1 Determine all natural numbers n such that $9^{n}-7$ can be represented as a product of at least two consecutive natural numbers.

Problem 2 Let n be a natural number and C a non-negative real number. Determine the number of sequences of real numbers $1, x_{2}, \ldots, x_{n}, 1$ such that the absolute value of the difference between any two adjacent terms is equal to C.

Problem 3 Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(\max \{x, y\}+\min \{f(x), f(y)\})=x+y
$$

for all real $x, y \in \mathbb{R}$
Proposed by Nikola Velov
Problem 4 Let $t_{k}=a_{1}^{k}+a_{2}^{k}+\ldots+a_{n}^{k}$, where $a_{1}, a_{2}, \ldots a_{n}$ are positive real numbers and $k \in \mathbb{N}$. Prove that

$$
\frac{t_{5}^{2} t_{1}^{6}}{15}-\frac{t_{4}^{4} t_{2}^{2} t_{1}^{2}}{6}+\frac{t_{2}^{3} t_{4}^{5}}{10} \geq 0
$$

Proposed by Daniel Velinov
Problem 5 Given is an acute $\triangle A B C$ with orthocenter H. The point H^{\prime} is symmetric to H over the side $A B$. Let N be the intersection point of $H H^{\prime}$ and $A B$. The circle passing through A, N and H^{\prime} intersects $A C$ for the second time in M, and the circle passing through B, N and H^{\prime} intersects $B C$ for the second time in P. Prove that M, N and P are collinear.

Proposed by Petar Filipovski

