Art of Problem Solving

AoPS Community

Finals 2012

www.artofproblemsolving.com/community/c645852
by mruczek

- Day 1

1 Decide, whether exists positive rational number w, which isn't integer, such that w^{w} is a rational number.

2 Determine all pairs (m, n) of positive integers, for which cube K with edges of length n, can be build in with cuboids of shape $m \times 1 \times 1$ to create cube with edges of length $n+2$, which has the same center as cube K.

3 Triangle $A B C$ with $A B=A C$ is inscribed in circle o. Circles o_{1} and o_{2} are internally tangent to circle o in points P and Q, respectively, and they are tangent to segments $A B$ and $A C$, respectively, and they are disjoint with the interior of triangle $A B C$. Let m be a line tangent to circles o_{1} and o_{2}, such that points P and Q lie on the opposite side than point A. Line m cuts segments $A B$ and $A C$ in points K and L, respectively. Prove, that intersection point of lines $P K$ and $Q L$ lies on bisector of angle $B A C$.

- Day 2
$4 \quad n$ players $(n \geq 4)$ took part in the tournament. Each player played exactly one match with every other player, there were no draws. There was no four players (A, B, C, D), such that A won with B, B won with C, C won with D and D won with A. Determine, depending on n, maximum number of trios of players (A, B, C), such that A won with B, B won with C and C won with A.
(Attention: Trios $(A, B, C),(B, C, A)$ and (C, A, B) are the same trio.)
5 Point O is a center of circumcircle of acute triangle $A B C$, bisector of angle $B A C$ cuts side $B C$ in point D. Let M be a point such that, $M C \perp B C$ and $M A \perp A D$. Lines $B M$ and $O A$ intersect in point P. Show that circle of center in point P passing through a point A is tangent to line $B C$.

6 Show that for any positive real numbers a, b, c true is inequality: $\left(\frac{a-b}{c}\right)^{2}+\left(\frac{b-c}{a}\right)^{2}+\left(\frac{c-a}{b}\right)^{2} \geq$ $2 \sqrt{2}\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)$.

