

AoPS Community

2012 Polish MO Finals

Finals 2012

www.artofproblemsolving.com/community/c645852 by mruczek

_	Day 1
1	Decide, whether exists positive rational number w , which isn't integer, such that w^w is a rational number.
2	Determine all pairs (m, n) of positive integers, for which cube K with edges of length n , can be build in with cuboids of shape $m \times 1 \times 1$ to create cube with edges of length $n + 2$, which has the same center as cube K .
3	Triangle ABC with $AB = AC$ is inscribed in circle o . Circles o_1 and o_2 are internally tangent to circle o in points P and Q , respectively, and they are tangent to segments AB and AC , respectively, and they are disjoint with the interior of triangle ABC . Let m be a line tangent to circles o_1 and o_2 , such that points P and Q lie on the opposite side than point A . Line m cuts segments AB and AC in points K and L , respectively. Prove, that intersection point of lines PK and QL lies on bisector of angle BAC .
-	Day 2
4	<i>n</i> players ($n \ge 4$) took part in the tournament. Each player played exactly one match with every other player, there were no draws. There was no four players (A, B, C, D) , such that A won with B , B won with C , C won with D and D won with A . Determine, depending on n , maximum number of trios of players (A, B, C) , such that A won with B , B won with C and C won with A . (Attention: Trios (A, B, C) , (B, C, A) and (C, A, B) are the same trio.)
5	Point <i>O</i> is a center of circumcircle of acute triangle <i>ABC</i> , bisector of angle <i>BAC</i> cuts side <i>BC</i> in point <i>D</i> . Let <i>M</i> be a point such that, $MC \perp BC$ and $MA \perp AD$. Lines <i>BM</i> and <i>OA</i> intersect in point <i>P</i> . Show that circle of center in point <i>P</i> passing through a point <i>A</i> is tangent to line <i>BC</i> .
6	Show that for any positive real numbers a, b, c true is inequality: $\left(\frac{a-b}{c}\right)^2 + \left(\frac{b-c}{a}\right)^2 + \left(\frac{c-a}{b}\right)^2 \ge 2\sqrt{2}\left(\frac{a-b}{c} + \frac{b-c}{a} + \frac{c-a}{b}\right)$.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.