AoPS Community

National Math Olympiad (Second Round)

www.artofproblemsolving.com/community/c647701
by Etemadi, AlirezaOpmc, Taha1381

1 Let P be the intersection of $A C$ and $B D$ in isosceles trapezoid $A B C D(A B \| C D, B C=A D)$. The circumcircle of triangle $A B P$ inersects $B C$ for the second time at X. Point Y lies on $A X$ such that $D Y \| B C$. Prove that $Y \hat{D} A=2 . Y \hat{C} A$.

2 Let n be odd natural number and $x_{1}, x_{2}, \cdots, x_{n}$ be pairwise distinct numbers. Prove that someone can divide the difference of these number into two sets with equal sum.
($X=\left\{\left|x_{i}-x_{j}\right| \mid i<j\right\}$)
3 Let $a>k$ be natural numbers and $r_{1}<r_{2}<\ldots r_{n}, s_{1}<s_{2}<\cdots<s_{n}$ be sequences of natural numbers such that:
$\left(a^{r_{1}}+k\right)\left(a^{r_{2}}+k\right) \ldots\left(a^{r_{n}}+k\right)=\left(a^{s_{1}}+k\right)\left(a^{s_{2}}+k\right) \ldots\left(a^{s_{n}}+k\right)$
Prove that these sequences are equal.
$4 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(x+y) f\left(x^{2}-x y+y^{2}\right)=x^{3}+y^{3}
$$

for all reals x, y.
5 Lamps of the hall switch by only five keys. Every key is connected to one or more lamp(s). By switching every key, all connected lamps will be switched too. We know that no two keys have same set of connected lamps with each other. At first all of the lamps are off. Prove that someone can switch just three keys to turn at least two lamps on.

6 Two circles ω_{1}, ω_{2} intersect at P, Q. An arbitrary line passing through P intersects ω_{1}, ω_{2} at A, B respectively. Another line parallel to $A B$ intersects ω_{1} at D, F and ω_{2} at E, C such that E, F lie between C, D. Let $X \equiv A D \cap B E$ and $Y \equiv B C \cap A F$. Let R be the reflection of P about $C D$. Prove that:
a. R lies on $X Y$.
b. PR is the bisector of $X \hat{P} Y$.

