AoPS Community

Kazakhstan National Olympiad 2018

www.artofproblemsolving.com/community/c652166
by CinarArslan, qweDota

- \quad Grade 11
- [b] Day 1

1 In an equilateral trapezoid, the point O is the midpoint of the base $A D$. A circle with a center at a point O and a radius $B O$ is tangent to a straight line $A B$. Let the segment $A C$ intersect this circle at point $K(K \neq C)$, and let M is a point such that $A B C M$ is a parallelogram. The circumscribed circle of a triangle $C M D$ intersects the segment $A C$ at a point $L(L \neq C)$. Prove that $A K=C L$.

2 The natural number $m \geq 2$ is given.Sequence of natural numbers $\left(b_{0}, b_{1}, \ldots, b_{m}\right)$ is called concave if $b_{k}+b_{k-2} \leq 2 b_{k-1}$ for all $2 \leq k \leq m$. Prove that there exist not greater than 2^{m} concave sequences starting with $b_{0}=1$ or $b_{0}=2$

3 Is there exist a function $f: \mathbb{N} \rightarrow \mathbb{N}$ with for $\forall m, n \in \mathbb{N}$

$$
f(m f(n))=f(m) f(m+n)+n ?
$$

- [b] Day 2

4 Prove that for all reas $a, b, c, d \in(0,1)$ we have

$$
(a b-c d)(a c+b d)(a d-b c)+\min (a, b, c, d)<1 .
$$

$5 \quad$ Given set $S=\{x y(x+y) \mid x, y \in \mathbb{N}\}$. Let a and n natural numbers such that $a+2^{k} \in S$ for all $k=1,2,3, \ldots, n$. Find the greatest value of n.

6 Inside of convex quadrilateral $A B C D$ found a point M such that $\angle A M B=\angle A D M+\angle B C M$ and $\angle A M D=\angle A B M+\angle D C M$. Prove that

$$
A M \cdot C M+B M \cdot D M \geq \sqrt{A B \cdot B C \cdot C D \cdot D A}
$$

