Art of Problem Solving

AoPS Community

International Zhautykov Olympiad 2018

www.artofproblemsolving.com/community/c652171
by CinarArslan, qweDota

- [b] Day 1

1 Let α, β, γ measures of angles of opposite to the sides of triangle with measures a, b, c respectively.Prove that

$$
2\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right) \geq \frac{a^{2}}{b^{2}+c^{2}}+\frac{b^{2}}{a^{2}+c^{2}}+\frac{c^{2}}{a^{2}+b^{2}}
$$

2 Let N, K, L be points on $A B, B C, C A$ such that $C N$ bisector of angle $\angle A C B$ and $A L=B K$. Let $B L \cap A K=P$.If I, J be incenters of triangles $\triangle B P K$ and $\triangle A L P$ and $I J \cap C N=Q$ prove that $I Q=J P$

3 Prove that there exist infinitely pairs (m, n) such that $m+n$ divides $(m!)^{n}+(n!)^{m}+1$

- [b] Day 2

4 Crocodile chooses 1×4 tile from 2018×2018 square. The bear has tilometer that checks 3×3 square of 2018×2018 is there any of choosen cells by crocodile.Tilometer says "YES" if there is at least one choosen cell among checked 3×3 square. For what is the smallest number of such questions the Bear can certainly get an affirmative answer?
$5 \quad$ Find all real numbers a such that there exist $f: \mathbb{R} \rightarrow \mathbb{R}$ with

$$
f(x-f(y))=f(x)+a[y]
$$

for all $x, y \in \mathbb{R}$
$6 \quad$ In a circle with a radius R a convex hexagon is inscribed. The diagonals $A D$ and $B E, B E$ and $C F, C F$ and $A D$ of the hexagon intersect at the points M, N and K, respectively. Let $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}$ be the radii of circles inscribed in triangles $A B M, B C N, C D K, D E M, E F N, A F K$ respectively. Prove that.

$$
r_{1}+r_{2}+r_{3}+r_{4}+r_{5}+r_{6} \leq R \sqrt{3}
$$

