Art of Problem Solving

AoPS Community

Moroccan Team Selection Test 2005

www.artofproblemsolving.com/community/c65459
by tchebytchev, Sung-yoon Kim, Valentin Vornicu, erdos, zhaoli, pestich, orl

- Day 1

1 Prove that the equation $3 y^{2}=x^{4}+x$ has no positive integer solutions.
2 Let A be a set of positive integers such that
a) if $a \in A$, the all the positive divisors of a are also in A;
b) if $a, b \in A$, with $1<a<b$, then $1+a b \in A$.

Prove that if A has at least 3 elements, then A is the set of all positive integers.
3 The real numbers $a_{1}, a_{2}, \ldots, a_{100}$ satisfy the relationship : $a_{1}^{2}+a_{2}^{2}+\cdots+a_{100}^{2}+\left(a_{1}+a_{2}+\cdots+\right.$ $\left.a_{100}\right)^{2}=101$
Prove that $\left|a_{k}\right| \leq 10$ for all $k \in\{1,2, \ldots, 100\}$
4 Consider a cyclic quadrilateral $A B C D$, and let S be the intersection of $A C$ and $B D$. Let E and F the orthogonal projections of S on $A B$ and $C D$ respectively.
Prove that the perpendicular bisector of segment $E F$ meets the segments $A D$ and $B C$ at their midpoints.

- Day 2

1 Find all the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying: $(x+y)(f(x)-f(y))=(x-y) f(x+y)$ for all $x, y \in \mathbb{R}$

2 Let a, b, c be positive real numbers. Prove the inequality

$$
\frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{a} \geq a+b+c+\frac{4(a-b)^{2}}{a+b+c}
$$

When does equality occur?
3 Find all primes p such that $p^{2}-p+1$ is a perfect cube.
4 A convex quadrilateral $A B C D$ has an incircle. In each corner a circle is inscribed that also externally touches the two circles inscribed in the adjacent corners. Show that at least two circles have the same size.

- Day 3

1 Find all the positive primes p for which there exist integers m, n satisfying: $p=m^{2}+n^{2}$ and $m^{3}+n^{3}-4$ is divisible by p.

2 Consider the set $A=\{1,2, \ldots, 49\}$. We partitionate A into three subsets. Prove that there exist a set from these subsets containing three distincts elements a, b, c such that $a+b=c$

3 Let a_{1}, a_{2}, \ldots be an infinite sequence of real numbers, for which there exists a real number c with $0 \leq a_{i} \leq c$ for all i, such that

$$
\left|a_{i}-a_{j}\right| \geq \frac{1}{i+j} \quad \text { for all } i, j \text { with } i \neq j
$$

Prove that $c \geq 1$.
4 Let $A B C D$ be a cyclic qudrilaterlal such that $A B \cdot B C=2 . C D \cdot D A$
Prove that $8 . B D^{2} \leq 9 . A C^{2}$

