

AoPS Community

Moroccan Team Selection Test 2012

www.artofproblemsolving.com/community/c65509 by tchebytchev, momo1729, CPT_J_H_Miller, cadiTM, WakeUp

– Day 1

1 Find all prime numbers p_1, p_n (not necessarily different) such that :

$$\prod_{i=1}^n p_i = 10 \sum_{i=1}^n p_i$$

- **2** Let $(a_n)_{n\geq 1}$ be an increasing sequence of positive integers such that $a_1 = 1$, and for all positive integers n, $a_{n+1} \leq 2n$.
 - Prove that for every positive *n*; there exists positive integers *p* and *q* such that $n = a_p a_q$.

3
$$a_1, a_n$$
 are real numbers such that $a_1 + a_n = 0$ and $|a_1| + |a_n| = 1$. Prove that :
 $|a_1 + 2a_2 + a_n| \le \frac{n-1}{2}$

- 4 ABC is a non-isosceles triangle. O, I, H are respectively the center of its circumscribed circle, the inscribed circle and its orthocenter. prove that \widehat{OIH} is obtuse.
- Day 2
- **1** Find all positive integers n, k such that $(n-1)! = n^k 1$.
- **2** Find all positive integer n and prime number p such that $p^2 + 7^n$ is a perfect square

3 Find the maximal value of the following expression, if a, b, c are nonnegative and a + b + c = 1.

$$\frac{1}{a^2 - 4a + 9} + \frac{1}{b^2 - 4b + 9} + \frac{1}{c^2 - 4c + 9}$$

4 Let *ABC* be an acute triangle with circumcircle Ω . Let B_0 be the midpoint of *AC* and let C_0 be the midpoint of *AB*. Let *D* be the foot of the altitude from *A* and let *G* be the centroid of the triangle *ABC*. Let ω be a circle through B_0 and C_0 that is tangent to the circle Ω at a point $X \neq A$. Prove that the points *D*, *G* and *X* are collinear.

Proposed by Ismail Isaev and Mikhail Isaev, Russia

Art of Problem Solving is an ACS WASC Accredited School.