Art of Problem Solving

AoPS Community

Moroccan Team Selection Test 2012

www.artofproblemsolving.com/community/c65509
by tchebytchev, momo1729, CPT_J_H_Miller, cadiTM, WakeUp

- Day 1

1 Find all prime numbers $p_{1},, p_{n}$ (not necessarily different) such that :

$$
\prod_{i=1}^{n} p_{i}=10 \sum_{i=1}^{n} p_{i}
$$

2 Let $\left(a_{n}\right)_{n \geq 1}$ be an increasing sequence of positive integers such that $a_{1}=1$, and for all positive integers $\bar{n}, a_{n+1} \leq 2 n$.
Prove that for every positive n; there exists positive integers p and q such that $n=a_{p}-a_{q}$.
$3 a_{1}, a_{n}$ are real numbers such that $a_{1}++a_{n}=0$ and $\left|a_{1}\right|++\left|a_{n}\right|=1$. Prove that :

$$
\left|a_{1}+2 a_{2}++n a_{n}\right| \leq \frac{n-1}{2}
$$

$4 A B C$ is a non-isosceles triangle. O, I, H are respectively the center of its circumscribed circle, the inscribed circle and its orthocenter. prove that $\widehat{O I H}$ is obtuse.

```
- Day 2
```

$1 \quad$ Find all positive integers n, k such that $(n-1)!=n^{k}-1$.
2 Find all positive integer n and prime number p such that $p^{2}+7^{n}$ is a perfect square
3 Find the maximal value of the following expression, if a, b, c are nonnegative and $a+b+c=1$.

$$
\frac{1}{a^{2}-4 a+9}+\frac{1}{b^{2}-4 b+9}+\frac{1}{c^{2}-4 c+9}
$$

4 Let $A B C$ be an acute triangle with circumcircle Ω. Let B_{0} be the midpoint of $A C$ and let C_{0} be the midpoint of $A B$. Let D be the foot of the altitude from A and let G be the centroid of the triangle $A B C$. Let ω be a circle through B_{0} and C_{0} that is tangent to the circle Ω at a point $X \neq A$. Prove that the points D, G and X are collinear.
Proposed by Ismail Isaev and Mikhail Isaev, Russia

